thermal plasma
简明释义
热等离子体
英英释义
例句
1.Using thermal plasma, scientists can achieve high temperatures necessary for fusion reactions.
科学家可以利用热等离子体达到核聚变反应所需的高温。
2.Researchers are exploring how thermal plasma can be used for waste treatment.
研究人员正在探索如何利用热等离子体进行废物处理。
3.The manufacturing process uses thermal plasma to cut through metals with precision.
该制造过程使用热等离子体精确切割金属。
4.The thermal plasma generated in the lab is used for advanced material synthesis.
实验室中生成的热等离子体用于先进材料的合成。
5.In aerospace applications, thermal plasma is essential for simulating re-entry conditions.
在航空航天应用中,热等离子体对模拟再入条件至关重要。
作文
Thermal plasma, often referred to as 'hot plasma', is a state of matter in which a significant portion of the particles are ionized, resulting in a collection of charged particles and neutral atoms. This phenomenon occurs at high temperatures, typically exceeding thousands of degrees Celsius. The understanding of thermal plasma (热等离子体) is crucial in various scientific fields, including astrophysics, fusion research, and industrial applications.One of the most fascinating aspects of thermal plasma (热等离子体) is its prevalence in the universe. Stars, including our Sun, are essentially massive balls of thermal plasma (热等离子体). The core of these stars reaches temperatures around 15 million degrees Celsius, where nuclear fusion occurs, releasing vast amounts of energy. Understanding the behavior of thermal plasma (热等离子体) in stellar environments helps scientists comprehend stellar evolution and the lifecycle of galaxies.In addition to its role in astrophysics, thermal plasma (热等离子体) is also pivotal in the field of nuclear fusion research. Fusion reactors aim to replicate the processes that power the sun by creating conditions where thermal plasma (热等离子体) can be sustained and manipulated. The challenge lies in maintaining the stability of thermal plasma (热等离子体) while achieving the necessary temperatures and pressures for fusion to occur. Researchers utilize magnetic confinement and inertial confinement techniques to achieve this goal, with the hope of providing a clean and virtually limitless source of energy.Moreover, thermal plasma (热等离子体) has numerous industrial applications. For instance, it is used in plasma cutting and welding processes, where the high temperatures of thermal plasma (热等离子体) allow for precise cutting and joining of metals. In the semiconductor industry, thermal plasma (热等离子体) is employed in processes such as etching and deposition, enabling the fabrication of microelectronic devices. The ability to control the properties of thermal plasma (热等离子体) makes it an invaluable tool in modern manufacturing.Another exciting application of thermal plasma (热等离子体) is in environmental technology. Researchers are exploring the use of thermal plasma (热等离子体) for waste treatment and gasification processes. By converting organic waste into syngas or other useful products, thermal plasma (热等离子体) technologies can contribute to sustainable waste management solutions. Additionally, the high temperatures involved can help break down hazardous materials, reducing their environmental impact.In conclusion, thermal plasma (热等离子体) represents a fascinating state of matter with profound implications across various scientific and industrial domains. From the heart of stars to innovative technologies on Earth, understanding and harnessing the properties of thermal plasma (热等离子体) is essential for advancing our knowledge and capabilities. As research continues to evolve, the potential applications of thermal plasma (热等离子体) may lead to breakthroughs that could revolutionize energy production, manufacturing processes, and environmental sustainability.
热等离子体,通常被称为“热等离子体”,是一种物质状态,其中大量粒子被电离,导致带电粒子和中性原子的集合。这个现象发生在高温下,通常超过几千摄氏度。理解热等离子体(thermal plasma)在各个科学领域至关重要,包括天体物理学、聚变研究和工业应用。热等离子体(thermal plasma)最迷人的方面之一是它在宇宙中的普遍存在。恒星,包括我们的太阳,基本上是巨大的热等离子体(thermal plasma)球。这些恒星的核心温度达到约1500万摄氏度,在那里核聚变发生,释放出大量能量。理解热等离子体(thermal plasma)在恒星环境中的行为有助于科学家理解恒星演化和星系的生命周期。除了在天体物理学中的作用外,热等离子体(thermal plasma)在核聚变研究领域也至关重要。聚变反应堆旨在通过创造条件来复制太阳的能量过程,在这些条件下可以维持和操纵热等离子体(thermal plasma)。挑战在于在实现聚变所需的温度和压力时保持热等离子体(thermal plasma)的稳定性。研究人员利用磁约束和惯性约束技术来实现这一目标,希望提供一种清洁且几乎无限的能源来源。此外,热等离子体(thermal plasma)在许多工业应用中也有广泛用途。例如,它用于等离子切割和焊接过程中,热等离子体(thermal plasma)的高温使得金属的精确切割和连接成为可能。在半导体行业中,热等离子体(thermal plasma)用于蚀刻和沉积等工艺,使微电子设备的制造成为可能。控制热等离子体(thermal plasma)的特性使其成为现代制造中不可或缺的工具。热等离子体(thermal plasma)的另一个令人兴奋的应用是在环境技术中。研究人员正在探索使用热等离子体(thermal plasma)进行废物处理和气化过程。通过将有机废物转化为合成气或其他有用产品,热等离子体(thermal plasma)技术可以为可持续的废物管理解决方案做出贡献。此外,所涉及的高温可以帮助分解有害材料,减少其对环境的影响。总之,热等离子体(thermal plasma)代表了一种迷人的物质状态,对各个科学和工业领域具有深远的影响。从恒星的核心到地球上的创新技术,理解和利用热等离子体(thermal plasma)的特性对于推动我们的知识和能力至关重要。随着研究的不断发展,热等离子体(thermal plasma)的潜在应用可能会导致革命性的突破,从而彻底改变能源生产、制造过程和环境可持续性。
相关单词