thermal neutron poisoning
简明释义
热中子中毒
英英释义
例句
1.To mitigate thermal neutron poisoning, we can use materials with low neutron absorption cross-sections.
为了减轻热中子中毒,我们可以使用低中子吸收截面的材料。
2.The presence of boron in the reactor can lead to thermal neutron poisoning, reducing efficiency.
反应堆中硼的存在可能导致热中子中毒,降低效率。
3.Engineers must consider thermal neutron poisoning when designing fuel assemblies for nuclear reactors.
工程师在设计核反应堆的燃料组件时必须考虑热中子中毒。
4.During the experiment, the scientists noted that thermal neutron poisoning affected the reactivity of the core.
在实验中,科学家们注意到热中子中毒影响了核心的反应性。
5.The reactor experienced issues due to thermal neutron poisoning, which refers to the absorption of thermal neutrons by certain materials.
反应堆由于热中子中毒而出现问题,这指的是某些材料对热中子的吸收。
作文
In the field of nuclear physics and engineering, understanding the behavior of neutrons is crucial for the safe and efficient operation of nuclear reactors. One important phenomenon that arises in this context is thermal neutron poisoning. This term refers to the process by which certain materials absorb thermal neutrons, thereby reducing the number of neutrons available to sustain a nuclear chain reaction. To grasp the significance of thermal neutron poisoning, we must first understand what thermal neutrons are and how they interact with matter.Thermal neutrons are neutrons that have been slowed down to thermal energies, typically around 0.025 eV. They are produced in nuclear reactions and play a critical role in sustaining fission reactions in nuclear reactors. When a uranium or plutonium nucleus absorbs a thermal neutron, it can become unstable and split, releasing a significant amount of energy along with additional neutrons that can perpetuate the chain reaction. However, not all materials are neutral in this process; some can hinder the reaction by absorbing these thermal neutrons.This absorption leads us to the concept of thermal neutron poisoning. Certain isotopes, such as boron-10 and cadmium, are known to be effective at capturing thermal neutrons. When these materials are present in the reactor core, they can significantly decrease the number of free neutrons available for sustaining the fission process. This effect can be both beneficial and detrimental, depending on the operational goals of the reactor.On one hand, thermal neutron poisoning can be used intentionally to control the reactivity of a nuclear reactor. By introducing materials that cause neutron absorption, operators can manage the reactor's power output and ensure it operates safely within designated limits. This is particularly important in pressurized water reactors (PWRs) and boiling water reactors (BWRs), where maintaining a delicate balance of neutron flux is essential for stable operation.On the other hand, unintentional thermal neutron poisoning can lead to challenges in reactor design and operation. If a reactor is not designed to account for the presence of neutron-absorbing materials, it may experience a drop in reactivity that could compromise its ability to generate power efficiently. For instance, if fuel impurities or structural materials inadvertently absorb too many thermal neutrons, the reactor might require more frequent refueling or adjustments to maintain optimal performance.Moreover, the phenomenon of thermal neutron poisoning also has implications for the long-term sustainability of nuclear power. As reactors age, the accumulation of neutron-absorbing isotopes can alter the neutron economy of the reactor, necessitating careful monitoring and management. This highlights the importance of ongoing research into materials science and neutron behavior to optimize reactor designs and enhance their longevity.In conclusion, thermal neutron poisoning is a vital concept in nuclear science that illustrates the complex interplay between neutrons and materials in a reactor environment. Understanding this phenomenon is essential for the safe and efficient operation of nuclear reactors, as it affects both the control of nuclear reactions and the overall performance of the reactor. As we continue to advance in nuclear technology, the insights gained from studying thermal neutron poisoning will play a crucial role in shaping the future of nuclear energy production and ensuring its safety and sustainability.
在核物理和工程领域,理解中子行为对于安全和高效地操作核反应堆至关重要。在这种情况下,一个重要的现象是热中子毒化。这个术语指的是某些材料吸收热中子,从而减少可用于维持核链反应的中子数量。要理解热中子毒化的重要性,我们必须首先了解什么是热中子以及它们如何与物质相互作用。热中子是指被减速至热能量的中子,通常约为0.025 eV。它们是在核反应中产生的,并在维持核反应堆中的裂变反应中发挥着关键作用。当铀或钚核吸收一个热中子时,它可能变得不稳定并裂变,释放出大量能量以及额外的中子,这些中子可以继续维持链反应。然而,并非所有材料在这个过程中都是中性的;某些材料会通过吸收这些热中子来阻碍反应。这种吸收使我们引入了热中子毒化的概念。一些同位素,如硼-10和镉,被认为在捕获热中子方面有效。当这些材料存在于反应堆核心时,它们可以显著减少可用于维持裂变过程的自由中子的数量。这种效应在不同的操作目标下可以是有益的,也可以是有害的。一方面,热中子毒化可以被故意使用以控制核反应堆的反应性。通过引入导致中子吸收的材料,操作员可以管理反应堆的功率输出,确保其在指定的限制内安全运行。这在压水反应堆(PWR)和沸水反应堆(BWR)中尤为重要,因为维持中子通量的微妙平衡对稳定运行至关重要。另一方面,无意的热中子毒化可能会给反应堆设计和操作带来挑战。如果反应堆没有设计来考虑中子吸收材料的存在,它可能会经历反应性下降,从而妨碍其有效发电的能力。例如,如果燃料杂质或结构材料意外地吸收了过多的热中子,反应堆可能需要更频繁的加料或调整,以维持最佳性能。此外,热中子毒化现象对核能的长期可持续性也有影响。随着反应堆的老化,中子吸收同位素的积累可能会改变反应堆的中子经济学,需进行仔细监测和管理。这突显了对材料科学和中子行为持续研究的重要性,以优化反应堆设计并增强其使用寿命。总之,热中子毒化是核科学中的一个重要概念,它说明了反应堆环境中中子与材料之间复杂的相互作用。理解这一现象对核反应堆的安全和高效操作至关重要,因为它影响着核反应的控制和反应堆的整体性能。随着我们在核技术方面的不断进步,研究热中子毒化所获得的见解将在塑造核能生产的未来以及确保其安全性和可持续性方面发挥至关重要的作用。
相关单词