thermal neutron capture reaction
简明释义
热中子俘获反应
英英释义
例句
1.The thermal neutron capture reaction 热中子俘获反应 plays a crucial role in the production of medical isotopes used in diagnostic imaging.
在用于诊断成像的医学同位素生产中,热中子俘获反应 thermal neutron capture reaction 起着至关重要的作用。
2.The efficiency of a thermal neutron capture reaction 热中子俘获反应 can be enhanced by using materials with high neutron absorption cross-sections.
通过使用具有高中子吸收截面的材料,可以提高热中子俘获反应 thermal neutron capture reaction 的效率。
3.Scientists often study thermal neutron capture reactions 热中子俘获反应 to understand the behavior of different isotopes in nuclear physics.
科学家们经常研究热中子俘获反应 thermal neutron capture reactions,以理解不同同位素在核物理中的行为。
4.Research into thermal neutron capture reactions 热中子俘获反应 has led to advancements in radiation therapy for cancer treatment.
对热中子俘获反应 thermal neutron capture reactions 的研究促进了癌症治疗中放射治疗的进展。
5.In nuclear reactors, the process of thermal neutron capture reaction 热中子俘获反应 is essential for sustaining the fission chain reaction.
在核反应堆中,热中子俘获反应 thermal neutron capture reaction 的过程对维持裂变链反应至关重要。
作文
The concept of thermal neutron capture reaction is fundamental in the field of nuclear physics and plays a crucial role in various applications, including nuclear reactors and medical therapies. To understand this concept, we first need to define what thermal neutrons are. Thermal neutrons are neutrons that are in thermal equilibrium with their surroundings, meaning they have low kinetic energy, typically around 0.025 eV at room temperature. These neutrons are particularly important because they can effectively interact with certain nuclei, leading to the thermal neutron capture reaction, which is a process where a nucleus absorbs a thermal neutron and becomes a heavier isotope or a different element altogether.One of the primary applications of thermal neutron capture reaction is in nuclear reactors. In these reactors, thermal neutrons are produced through fission reactions. When these neutrons collide with fuel nuclei, such as uranium-235 or plutonium-239, they can initiate further fission events or be captured by other isotopes present in the reactor. This capture process is essential for maintaining the chain reaction that produces energy. Additionally, materials like boron or cadmium are often used in control rods to absorb thermal neutrons, thereby regulating the reaction rate within the reactor.Another significant application of thermal neutron capture reaction is in neutron capture therapy (NCT), a form of cancer treatment. In NCT, patients are administered a boron-containing compound, which preferentially accumulates in tumor cells. When these patients are exposed to thermal neutrons, the boron atoms undergo a thermal neutron capture reaction, resulting in the release of high-energy alpha particles. These particles can destroy the cancer cells while minimizing damage to surrounding healthy tissues. The effectiveness of this treatment relies heavily on the precise targeting of boron compounds to tumor cells, making the understanding of thermal neutron capture reaction vital for improving therapeutic outcomes.Moreover, the study of thermal neutron capture reaction has implications beyond energy production and medical applications. It also plays a role in the field of astrophysics, particularly in understanding nucleosynthesis—the process by which elements are formed in stars. During certain stellar processes, thermal neutrons are produced, and their capture by lighter elements leads to the formation of heavier elements, contributing to the cosmic abundance of elements we observe today.In conclusion, the thermal neutron capture reaction is a critical phenomenon with diverse applications across multiple fields, including nuclear energy, medicine, and astrophysics. Understanding the principles behind this reaction not only enhances our knowledge of nuclear interactions but also opens up new avenues for technological advancements and therapeutic strategies. As research continues to evolve, the potential for utilizing thermal neutron capture reaction in innovative ways remains vast, promising exciting developments in both science and industry.
“热中子俘获反应”的概念在核物理领域至关重要,并在核反应堆和医学治疗等多种应用中发挥着关键作用。要理解这一概念,我们首先需要定义什么是热中子。热中子是与其周围环境处于热平衡状态的中子,意味着它们具有低动能,通常在室温下约为0.025电子伏特。这些中子特别重要,因为它们能够有效地与某些核相互作用,从而导致“热中子俘获反应”,这是一个核吸收热中子并变成更重同位素或完全不同元素的过程。“热中子俘获反应”的主要应用之一是在核反应堆中。在这些反应堆中,热中子是通过裂变反应产生的。当这些中子与燃料核(如铀-235或钚-239)碰撞时,它们可以引发进一步的裂变事件,或者被反应堆中存在的其他同位素俘获。这个捕获过程对于维持产生能量的链式反应至关重要。此外,像硼或镉这样的材料通常用于控制棒,以吸收热中子,从而调节反应堆内的反应速率。“热中子俘获反应”的另一个重要应用是在中子俘获疗法(NCT)中,这是一种癌症治疗方法。在NCT中,患者会被给予含硼化合物,这种化合物优先积累在肿瘤细胞中。当这些患者暴露于热中子时,硼原子发生“热中子俘获反应”,释放出高能α粒子。这些粒子可以摧毁癌细胞,同时将对周围健康组织的损害降到最低。这种治疗的有效性在很大程度上依赖于硼化合物对肿瘤细胞的精确靶向,因此理解“热中子俘获反应”对改善治疗结果至关重要。此外,对“热中子俘获反应”的研究还超越了能源生产和医学应用,对天体物理学领域也有影响,特别是在理解核合成过程中——元素在恒星中形成的过程。在某些恒星过程中,热中子被产生,其对较轻元素的俘获导致重元素的形成,贡献了我们今天观察到的元素的宇宙丰度。总之,“热中子俘获反应”是一个关键现象,在核能、医学和天体物理学等多个领域具有广泛的应用。理解这一反应背后的原理不仅增强了我们对核相互作用的认识,而且为技术进步和治疗策略开辟了新的途径。随着研究的不断发展,利用“热中子俘获反应”的潜力仍然巨大,承诺在科学和工业中带来令人兴奋的发展。
相关单词