thermal ionization

简明释义

热电离

英英释义

Thermal ionization is the process by which atoms or molecules become ionized due to the absorption of thermal energy, resulting in the ejection of electrons and the formation of charged particles.

热离子化是指原子或分子由于吸收热能而发生离子化的过程,导致电子的逸出和带电粒子的形成。

例句

1.In astrophysics, thermal ionization 热离子化 helps explain the composition of stars.

在天体物理学中,热离子化有助于解释恒星的组成。

2.The thermal ionization 热离子化 of certain elements occurs at specific temperature ranges.

某些元素的热离子化发生在特定的温度范围内。

3.Scientists study thermal ionization 热离子化 to better understand the behavior of ions at high temperatures.

科学家研究热离子化,以更好地理解高温下离子的行为。

4.The process of thermal ionization 热离子化 is commonly used in mass spectrometry to analyze complex mixtures.

热离子化过程通常用于质谱法分析复杂混合物。

5.The efficiency of thermal ionization 热离子化 can be affected by temperature and pressure conditions.

热离子化的效率可能会受到温度和压力条件的影响。

作文

Thermal ionization is a process that occurs when atoms or molecules gain enough thermal energy to overcome the forces holding their electrons in place. This phenomenon is particularly significant in fields such as chemistry, physics, and astronomy, where understanding the behavior of ions is crucial. In essence, thermal ionization (热电离) refers to the conversion of neutral atoms into charged ions through the absorption of heat energy. When substances are heated to high temperatures, the kinetic energy of their particles increases, allowing some electrons to escape from their atomic or molecular bonds. As a result, positively charged ions are formed, which can then interact with other particles or fields in their environment.One of the most common applications of thermal ionization (热电离) is in mass spectrometry, a technique used to analyze the composition of various substances. In this method, samples are subjected to high temperatures, leading to the ionization of their constituents. The resulting ions are then separated based on their mass-to-charge ratios, allowing scientists to identify the components of the sample accurately. This technique has revolutionized many scientific disciplines, including biochemistry, environmental science, and forensic analysis, by providing precise data about complex mixtures.Another area where thermal ionization (热电离) plays a critical role is in astrophysics. Stars, including our Sun, produce energy through nuclear fusion, which generates immense heat. This heat causes the outer layers of stars to become ionized, creating a plasma state where electrons are free to move independently of their nuclei. Understanding the processes of thermal ionization (热电离) in stellar environments helps astronomers comprehend the life cycles of stars, the formation of elements, and the dynamics of cosmic phenomena.In addition to its significance in scientific research, thermal ionization (热电离) has practical applications in various industries. For instance, in semiconductor manufacturing, controlling the ionization of materials is essential for creating devices with desired electrical properties. By carefully managing the thermal conditions during production, manufacturers can ensure that the right amount of ionization occurs, resulting in high-quality semiconductors that power modern electronics.Moreover, thermal ionization (热电离) is also relevant in geochemistry, where it aids in the study of isotopic compositions of elements found in rocks and minerals. By analyzing the ions produced through thermal ionization, geochemists can gain insights into the history of geological formations and the processes that shaped them over millions of years.In conclusion, thermal ionization (热电离) is a fundamental process that has far-reaching implications across multiple scientific disciplines and industries. From mass spectrometry to astrophysics and semiconductor manufacturing, the ability to understand and manipulate ionization through thermal means opens up numerous possibilities for advancements in technology and knowledge. As research continues to evolve, the importance of thermal ionization (热电离) will undoubtedly grow, leading to new discoveries and innovations that enhance our understanding of the natural world.

热电离是一个过程,当原子或分子获得足够的热能以克服将其电子固定在一起的力时,就会发生这种现象。这种现象在化学、物理和天文学等领域中尤为重要,因为理解离子的行为至关重要。简而言之,thermal ionization(热电离)指的是通过吸收热能将中性原子转化为带电离子。当物质被加热到高温时,其粒子的动能增加,允许一些电子从它们的原子或分子键中逃逸。因此,形成了带正电的离子,这些离子可以与环境中的其他粒子或场进行相互作用。thermal ionization(热电离)的一个常见应用是在质谱分析中,这是一种用于分析各种物质组成的技术。在这种方法中,样品被加热到高温,从而导致其成分的电离。随后,产生的离子根据其质量与电荷比进行分离,使科学家能够准确识别样品的成分。这项技术已经彻底改变了包括生物化学、环境科学和法医分析在内的许多科学学科,通过提供关于复杂混合物的精确数据。thermal ionization(热电离)在天体物理学中也扮演着关键角色。恒星,包括我们的太阳,通过核聚变产生能量,这会产生巨大的热量。这种热量使恒星的外层变得电离,形成一种等离子态,其中电子可以独立于其原子核自由移动。理解恒星环境中的thermal ionization(热电离)过程有助于天文学家理解恒星的生命周期、元素的形成以及宇宙现象的动态。除了在科学研究中的重要性,thermal ionization(热电离)在各个行业中也有实际应用。例如,在半导体制造中,控制材料的电离对于创建具有所需电气特性的设备至关重要。通过在生产过程中仔细管理热条件,制造商可以确保发生适量的电离,从而生产出高质量的半导体,为现代电子设备提供动力。此外,thermal ionization(热电离)在地球化学中也相关,它有助于研究岩石和矿物中元素的同位素组成。通过分析通过热电离产生的离子,地球化学家可以深入了解地质构造的历史及其数百万年来塑造它们的过程。总之,thermal ionization(热电离)是一个基本过程,在多个科学学科和行业中具有深远的影响。从质谱分析到天体物理学和半导体制造,理解和操控通过热手段的电离能力为技术和知识的进步开辟了众多可能性。随着研究的不断发展,thermal ionization(热电离)的重要性无疑将增长,导致新的发现和创新,增强我们对自然世界的理解。

相关单词

thermal

thermal详解:怎么读、什么意思、用法

ionization

ionization详解:怎么读、什么意思、用法