thermal inelastic scattering cross section
简明释义
热中子非弹性散射截面
英英释义
例句
1.Experimental data on the thermal inelastic scattering cross section 热非弹性散射截面 is essential for validating theoretical models.
关于热非弹性散射截面 热非弹性散射截面 的实验数据对于验证理论模型至关重要。
2.The measurement of the thermal inelastic scattering cross section 热非弹性散射截面 is crucial for understanding neutron interactions in materials.
测量热非弹性散射截面 热非弹性散射截面 对于理解中子在材料中的相互作用至关重要。
3.In nuclear physics, the thermal inelastic scattering cross section 热非弹性散射截面 helps predict how materials will behave under neutron bombardment.
在核物理中,热非弹性散射截面 热非弹性散射截面 有助于预测材料在中子轰击下的行为。
4.The thermal inelastic scattering cross section 热非弹性散射截面 can be used to determine the energy levels of atomic nuclei.
可以使用热非弹性散射截面 热非弹性散射截面 来确定原子核的能级。
5.Researchers found that the thermal inelastic scattering cross section 热非弹性散射截面 of hydrogen is significantly different from that of heavy water.
研究人员发现,氢的热非弹性散射截面 热非弹性散射截面 与重水的截面显著不同。
作文
Understanding the concept of thermal inelastic scattering cross section is crucial for researchers and scientists working in the field of nuclear physics and materials science. This term refers to a specific measure that quantifies the likelihood of an inelastic scattering event occurring when thermal neutrons interact with a target material. Inelastic scattering is a process where the kinetic energy of the incoming neutron is not conserved, leading to a change in the internal energy states of the target material. This phenomenon is particularly important in various applications, including neutron scattering experiments, nuclear reactors, and the study of material properties.When thermal neutrons collide with nuclei in a material, they can either be elastically scattered, where the neutron retains its energy, or inelastically scattered, where some of the neutron's energy is transferred to the nucleus. The thermal inelastic scattering cross section provides a quantitative value that helps predict how likely these inelastic interactions are to occur. This measurement is essential for understanding how materials behave under neutron irradiation and can influence the design of nuclear reactors and radiation shielding.The thermal inelastic scattering cross section is typically expressed in barns, a unit of area used in nuclear and particle physics. The size of the cross section can vary significantly depending on the type of material and its atomic structure. For example, light elements such as hydrogen have a much larger thermal inelastic scattering cross section compared to heavier elements like lead. This difference arises because lighter nuclei can absorb more energy during a collision, leading to more significant inelastic scattering events.In practical terms, knowing the thermal inelastic scattering cross section of a material allows scientists to optimize neutron sources and improve the efficiency of neutron scattering experiments. By selecting materials with favorable scattering properties, researchers can enhance their measurements and gain deeper insights into the fundamental properties of matter. Moreover, this information is vital for safety assessments in nuclear engineering, where understanding how materials respond to thermal neutrons can help prevent unwanted reactions and ensure the integrity of reactor components.In addition to its applications in nuclear physics, the thermal inelastic scattering cross section also plays a role in other scientific fields, such as condensed matter physics and chemistry. For instance, studying the inelastic scattering of neutrons can provide valuable information about the vibrational modes of molecules in a solid, which is essential for understanding phase transitions and other material behaviors.Overall, the thermal inelastic scattering cross section is a fundamental concept that bridges various scientific disciplines. Its implications extend beyond just nuclear physics, influencing materials science, engineering, and even chemistry. As research continues to advance in these fields, a thorough understanding of this term will remain vital for developing new technologies and improving existing ones. Scientists must continue to refine their techniques for measuring and interpreting the thermal inelastic scattering cross section, ensuring that they can accurately predict how materials will behave under different conditions. This ongoing work will contribute to the development of safer and more efficient nuclear systems and enhance our understanding of the physical world around us.
理解热非弹性散射截面的概念对于从事核物理和材料科学领域的研究人员和科学家至关重要。这个术语指的是一个特定的测量值,它量化了当热中子与目标材料相互作用时发生非弹性散射事件的可能性。非弹性散射是一个过程,在这个过程中,入射中子的动能不被守恒,导致目标材料的内部能态发生变化。这一现象在各种应用中尤为重要,包括中子散射实验、核反应堆以及材料性质的研究。当热中子与材料中的原子核碰撞时,它们可以被弹性散射,即中子保持其能量,或被非弹性散射,即中子的一部分能量被转移到原子核上。热非弹性散射截面提供了一个量化值,帮助预测这些非弹性相互作用发生的可能性。这一测量对于理解材料在中子辐照下的行为至关重要,并且可以影响核反应堆和辐射屏蔽的设计。热非弹性散射截面通常以巴恩(barn)为单位表示,这是核物理和粒子物理中使用的面积单位。截面的大小可以根据材料的类型及其原子结构显著变化。例如,氢等轻元素的热非弹性散射截面比铅等重元素大得多。这种差异产生的原因是轻核在碰撞过程中能够吸收更多的能量,从而导致更显著的非弹性散射事件。在实际应用中,知道某种材料的热非弹性散射截面可以使科学家优化中子源,提高中子散射实验的效率。通过选择具有良好散射特性的材料,研究人员可以增强他们的测量结果,并深入了解物质的基本属性。此外,这些信息对于核工程中的安全评估至关重要,理解材料如何对热中子做出反应可以帮助防止不必要的反应并确保反应堆组件的完整性。除了在核物理中的应用外,热非弹性散射截面还在其他科学领域中发挥着作用,例如凝聚态物理和化学。例如,研究中子的非弹性散射可以提供有关固体中分子振动模式的宝贵信息,这对于理解相变和其他材料行为至关重要。总体而言,热非弹性散射截面是一个基本概念,它连接了各种科学学科。其影响超越了核物理,影响材料科学、工程甚至化学。随着这些领域的研究不断推进,对这一术语的透彻理解将继续对新技术的发展和现有技术的改进至关重要。科学家们必须继续完善测量和解释热非弹性散射截面的技术,以确保他们能够准确预测材料在不同条件下的行为。这项持续的工作将有助于开发更安全、更高效的核系统,并增强我们对周围物理世界的理解。
相关单词