thermal fission cross section
简明释义
热中子裂变截面
英英释义
例句
1.Understanding the thermal fission cross section (热裂变截面) helps predict the behavior of nuclear reactions under thermal conditions.
理解热裂变截面(热裂变截面)有助于预测核反应在热条件下的行为。
2.The calculation of the neutron absorption rate relies heavily on the value of the thermal fission cross section (热裂变截面).
中子吸收率的计算在很大程度上依赖于热裂变截面(热裂变截面)的数值。
3.In nuclear reactor design, optimizing the thermal fission cross section (热裂变截面) can lead to more efficient fuel usage.
在核反应堆设计中,优化热裂变截面(热裂变截面)可以提高燃料的使用效率。
4.The thermal fission cross section (热裂变截面) of uranium-235 is significantly higher than that of uranium-238.
铀-235的热裂变截面(热裂变截面)明显高于铀-238。
5.Researchers are studying how different materials affect the thermal fission cross section (热裂变截面) for better safety protocols.
研究人员正在研究不同材料如何影响热裂变截面(热裂变截面),以制定更好的安全协议。
作文
The concept of thermal fission cross section is crucial in the field of nuclear physics and engineering, particularly when it comes to understanding how nuclear reactors operate. Essentially, the thermal fission cross section refers to the probability of a neutron causing fission in a given nuclear material when the neutrons are at thermal energies, which are typically around room temperature. This concept plays a significant role in the design and efficiency of nuclear reactors, as it helps engineers determine how effectively a reactor can sustain a chain reaction. In nuclear fission, heavy nuclei such as Uranium-235 or Plutonium-239 absorb neutrons and become unstable, leading to their splitting into smaller nuclei along with the release of a substantial amount of energy. The thermal fission cross section quantifies how likely this process is to occur under specific conditions. For instance, materials with a large thermal fission cross section are more favorable for use in reactors because they increase the likelihood of sustaining a fission chain reaction. The measurement of the thermal fission cross section is typically expressed in units of area, such as barns, where one barn equals 10^-28 square meters. This unit allows scientists and engineers to compare the fission probabilities of different isotopes. For example, Uranium-235 has a much larger thermal fission cross section compared to Uranium-238, making it more suitable as a fuel in thermal reactors. Understanding the thermal fission cross section also aids in safety measures within nuclear reactors. By knowing how various materials respond to thermal neutrons, engineers can design reactors that minimize the risk of uncontrolled reactions. Additionally, the thermal fission cross section is essential in calculating the neutron economy of a reactor, which is a measure of how effectively a reactor uses neutrons to maintain the fission process. Moreover, advancements in research have led to improved methods for measuring the thermal fission cross section. Techniques such as neutron activation analysis and prompt gamma-ray spectroscopy provide more accurate data on how different materials interact with thermal neutrons. This information is vital not only for reactor design but also for developing new nuclear materials and fuels that could enhance the efficiency and safety of nuclear power generation.In conclusion, the thermal fission cross section is a fundamental parameter in nuclear science that influences the design, efficiency, and safety of nuclear reactors. By understanding and utilizing this concept, scientists and engineers can optimize nuclear reactions, improve fuel utilization, and ensure safer operations in the field of nuclear energy. As the world continues to seek sustainable energy solutions, the importance of mastering concepts like the thermal fission cross section will only grow, highlighting its relevance in the future of energy production and nuclear technology.
“热裂变截面”的概念在核物理和工程领域至关重要,特别是在理解核反应堆的运行方式时。基本上,“热裂变截面”指的是中子在热能(通常约为室温)下导致给定核材料发生裂变的概率。这个概念在核反应堆的设计和效率中起着重要作用,因为它帮助工程师确定反应堆维持链式反应的有效性。在核裂变中,重核如铀-235或钚-239吸收中子并变得不稳定,从而导致其分裂成较小的核,同时释放出大量能量。“热裂变截面”量化了在特定条件下这一过程发生的可能性。例如,具有较大“热裂变截面”的材料更适合用于反应堆,因为它们增加了维持裂变链式反应的可能性。“热裂变截面”的测量通常以面积单位表示,如巴恩,其中一个巴恩等于10^-28平方米。这个单位使科学家和工程师能够比较不同同位素的裂变概率。例如,铀-235的“热裂变截面”远大于铀-238,使其更适合作为热反应堆中的燃料。理解“热裂变截面”还有助于核反应堆的安全措施。通过了解各种材料对热中子的反应,工程师可以设计出减少失控反应风险的反应堆。此外,“热裂变截面”在计算反应堆的中子经济学中也至关重要,中子经济学是衡量反应堆如何有效利用中子以维持裂变过程的指标。此外,研究的进展导致了测量“热裂变截面”的改进方法。中子激活分析和瞬态伽马射线光谱等技术提供了关于不同材料与热中子相互作用的更准确数据。这些信息对于反应堆设计至关重要,同时也有助于开发新的核材料和燃料,从而提高核能发电的效率和安全性。总之,“热裂变截面”是核科学中的一个基本参数,影响着核反应堆的设计、效率和安全性。通过理解和利用这一概念,科学家和工程师可以优化核反应、改善燃料利用率,并确保核能领域的安全操作。随着世界继续寻求可持续能源解决方案,掌握诸如“热裂变截面”的概念的重要性只会增加,突显出其在未来能源生产和核技术中的相关性。
相关单词