thermal embrittlement

简明释义

热脆化

英英释义

Thermal embrittlement refers to the degradation of a material's mechanical properties, particularly its toughness, due to exposure to high temperatures over time.

热脆化是指材料在高温环境下长时间暴露后,其机械性能,特别是韧性,发生退化的现象。

例句

1.Research indicates that thermal embrittlement can significantly reduce the lifespan of certain alloys.

研究表明,热脆性可以显著缩短某些合金的使用寿命。

2.Engineers must consider thermal embrittlement when designing components for high-temperature applications.

工程师在为高温应用设计部件时必须考虑热脆性

3.The steel components in the reactor showed signs of thermal embrittlement due to prolonged exposure to high temperatures.

反应堆中的钢部件因长时间暴露在高温下而出现了热脆性的迹象。

4.Materials exposed to extreme heat can experience thermal embrittlement, leading to unexpected failures.

暴露于极端高温的材料可能会经历热脆性,导致意外故障。

5.The failure analysis revealed that thermal embrittlement was a key factor in the cracking of the turbine blades.

故障分析显示,热脆性是涡轮叶片开裂的一个关键因素。

作文

Thermal embrittlement is a phenomenon that occurs in materials when they are exposed to high temperatures for prolonged periods. This process can significantly affect the mechanical properties of metals and other materials, leading to a decrease in toughness and an increase in brittleness. Understanding thermal embrittlement (热脆化) is crucial for engineers and material scientists, as it can have serious implications for the safety and longevity of structures and components in various industries.One of the primary causes of thermal embrittlement (热脆化) is the diffusion of elements within the material. When metals are heated, atoms gain energy and move more freely. This increased atomic mobility can lead to the segregation of certain elements at grain boundaries or the formation of brittle phases. For example, in steel, prolonged exposure to high temperatures can cause the precipitation of carbides, which can make the material more susceptible to cracking under stress.In addition to chemical changes, thermal embrittlement (热脆化) can also result from microstructural alterations. The high temperatures can lead to grain growth, which decreases the number of grain boundaries that can impede crack propagation. As a result, larger grains can create paths for cracks to travel more easily, ultimately reducing the material's overall toughness. This is particularly concerning in applications where materials are subjected to cyclic loading or impact forces.The implications of thermal embrittlement (热脆化) are evident in various industries, especially those involving high-temperature operations, such as power generation, aerospace, and chemical processing. For instance, in nuclear reactors, the structural integrity of components is critical. If materials experience thermal embrittlement (热脆化), they may fail unexpectedly, leading to catastrophic consequences. Therefore, understanding the conditions that lead to this phenomenon is essential for designing safe and reliable systems.To mitigate the effects of thermal embrittlement (热脆化), engineers often employ several strategies. One approach is to select materials that are less prone to embrittlement at elevated temperatures. For example, some alloys are specifically designed to maintain their toughness even when exposed to high heat. Additionally, controlling the operating temperature and duration can help minimize the risk of thermal embrittlement (热脆化). Regular inspections and maintenance can also identify early signs of embrittlement, allowing for timely interventions.In conclusion, thermal embrittlement (热脆化) is a critical factor that affects the performance and reliability of materials subjected to high temperatures. By understanding the mechanisms behind this phenomenon, engineers can make informed decisions about material selection, design, and maintenance practices. As technology continues to advance, ongoing research into thermal embrittlement (热脆化) will be vital for ensuring the safety and efficacy of materials in demanding environments.

热脆化是材料在高温下长时间暴露时发生的一种现象。这一过程会显著影响金属和其他材料的机械性能,导致韧性降低、脆性增加。理解热脆化thermal embrittlement)对工程师和材料科学家至关重要,因为它可能对各种行业中结构和组件的安全性和使用寿命产生严重影响。导致热脆化thermal embrittlement)的主要原因之一是材料内部元素的扩散。当金属被加热时,原子获得能量并更加自由地运动。这种原子运动性的增加可能导致某些元素在晶界处的分离或脆性相的形成。例如,在钢材中,长时间暴露于高温下可能导致碳化物的沉淀,从而使材料在应力下更容易发生裂纹。除了化学变化,热脆化thermal embrittlement)还可能由于微观结构的变化而导致。高温可能导致晶粒长大,从而减少可以阻碍裂纹传播的晶界数量。因此,较大的晶粒可能为裂纹提供更容易传播的路径,最终降低材料的整体韧性。这在材料受到循环载荷或冲击力的应用中尤其令人担忧。热脆化thermal embrittlement)的影响在多个行业中都很明显,特别是在涉及高温操作的行业,如发电、航空航天和化工处理。例如,在核反应堆中,组件的结构完整性至关重要。如果材料经历热脆化thermal embrittlement),可能会导致意外失效,从而造成灾难性后果。因此,理解导致这一现象的条件对于设计安全可靠的系统至关重要。为了减轻热脆化thermal embrittlement)的影响,工程师通常采用几种策略。一种方法是选择在高温下不易脆化的材料。例如,一些合金专门设计为即使在高温下也能保持韧性。此外,控制操作温度和持续时间可以帮助最小化热脆化thermal embrittlement)的风险。定期检查和维护也可以识别早期的脆化迹象,从而允许及时干预。总之,热脆化thermal embrittlement)是影响在高温下操作的材料性能和可靠性的关键因素。通过理解这一现象背后的机制,工程师可以在材料选择、设计和维护实践上做出明智的决策。随着技术的不断进步,持续研究热脆化thermal embrittlement)将对确保材料在苛刻环境中的安全性和有效性至关重要。

相关单词

thermal

thermal详解:怎么读、什么意思、用法

embrittlement

embrittlement详解:怎么读、什么意思、用法