system of atomic units
简明释义
原子单位制
英英释义
例句
1.Using a system of atomic units 原子单位制 helps in reducing the complexity of expressions involving physical constants.
使用系统的原子单位原子单位制有助于减少涉及物理常数的表达式的复杂性。
2.The system of atomic units 原子单位制 is particularly useful for theoretical physicists when deriving equations.
对于理论物理学家来说,原子单位制系统的原子单位在推导方程时特别有用。
3.When studying electron interactions, researchers often rely on a system of atomic units 原子单位制 to simplify their models.
在研究电子相互作用时,研究人员通常依赖于系统的原子单位原子单位制来简化他们的模型。
4.In quantum mechanics, the calculations are often simplified by using a system of atomic units 原子单位制 where fundamental constants are set to one.
在量子力学中,计算通常通过使用一个系统的原子单位原子单位制来简化,其中基本常数被设定为1。
5.Many computational chemistry programs allow users to switch to a system of atomic units 原子单位制 for easier calculations.
许多计算化学程序允许用户切换到系统的原子单位原子单位制以便更容易进行计算。
作文
In the realm of physics and chemistry, the concept of a system of atomic units plays a crucial role in simplifying complex calculations and enhancing our understanding of atomic and molecular systems. The system of atomic units is defined based on fundamental physical constants, allowing scientists to express quantities in a more manageable form. By utilizing this system, researchers can eliminate the need for cumbersome constants such as Planck's constant or the electron mass, leading to equations that are easier to handle and interpret. This simplification is particularly beneficial in quantum mechanics, where the behavior of particles at the atomic level can be intricate and challenging to describe using conventional units.The primary advantage of employing a system of atomic units is that it normalizes the values of certain fundamental constants to one. For instance, in this system, the electron charge, mass, and the reduced Planck constant are all set to unity. As a result, when performing calculations related to atomic interactions, physicists can focus solely on the variables that are significant to their specific problem without getting bogged down by additional constants. This streamlined approach not only saves time but also reduces the potential for errors in calculations.Moreover, the system of atomic units facilitates a deeper conceptual understanding of atomic phenomena. By removing the clutter of traditional units, students and researchers can visualize relationships between different physical quantities more clearly. For example, when studying the hydrogen atom, using atomic units allows for a straightforward representation of energy levels and wave functions, making it easier to grasp the underlying principles of quantum mechanics.In practice, the application of a system of atomic units is widespread in theoretical research and computational chemistry. Many software packages used for simulating molecular dynamics or electronic structure calculations are designed to operate within this framework. This consistency across various platforms ensures that results can be easily compared and shared among researchers, fostering collaboration and accelerating scientific progress.Despite its advantages, it is important to recognize that the system of atomic units may not be suitable for all contexts. In experimental settings, where measurements are typically reported in SI units, converting results from atomic units back to standard units can introduce complications. Therefore, while the system of atomic units offers significant benefits in theoretical contexts, scientists must remain mindful of the limitations and challenges associated with its use in practical applications.In conclusion, the system of atomic units represents a powerful tool in the fields of physics and chemistry, providing a simplified and coherent framework for analyzing atomic and molecular systems. By normalizing fundamental constants and focusing on relevant variables, this system enhances both the efficiency and clarity of scientific calculations. As research continues to advance, the system of atomic units will likely remain an integral part of theoretical studies, contributing to our ongoing quest to understand the complexities of the atomic world.
在物理和化学领域,原子单位制的概念在简化复杂计算和增强我们对原子和分子系统的理解方面发挥着至关重要的作用。原子单位制是基于基本物理常数定义的,使科学家能够以更易管理的形式表达量。通过利用这个系统,研究人员可以消除诸如普朗克常数或电子质量等繁琐常数的需要,从而导致更易处理和解释的方程。这种简化在量子力学中尤其有益,因为在原子水平上粒子的行为可能复杂且难以用传统单位描述。采用原子单位制的主要优点是将某些基本常数的值归一化为1。例如,在这个系统中,电子电荷、质量和约化普朗克常数都设定为单位。因此,在进行与原子相互作用相关的计算时,物理学家可以专注于对其特定问题重要的变量,而不必被额外的常数所困扰。这种简化的方法不仅节省了时间,还减少了计算中出错的可能性。此外,原子单位制促进了对原子现象的更深入的概念理解。通过消除传统单位的杂乱,学生和研究人员可以更清晰地可视化不同物理量之间的关系。例如,在研究氢原子时,使用原子单位可以直观地表示能级和波函数,使得掌握量子力学的基本原理变得更加容易。在实践中,原子单位制在理论研究和计算化学中广泛应用。许多用于模拟分子动力学或电子结构计算的软件包都是在这个框架内设计的。不同平台之间的一致性确保了结果可以轻松比较和共享,促进了合作并加速了科学进步。尽管有其优势,但重要的是要认识到原子单位制可能并不适合所有背景。在实验环境中,测量通常以SI单位报告,将结果从原子单位转换回标准单位可能会引入复杂性。因此,虽然原子单位制在理论背景中提供了显著的好处,但科学家们必须始终注意其在实际应用中的局限性和挑战。总之,原子单位制代表了物理和化学领域中的一种强大工具,为分析原子和分子系统提供了一个简化和连贯的框架。通过归一化基本常数并专注于相关变量,这个系统增强了科学计算的效率和清晰度。随着研究的不断推进,原子单位制可能会继续作为理论研究的重要组成部分,为我们持续理解原子世界的复杂性作出贡献。
相关单词