dipoles

简明释义

[ˈdaɪpəʊlz][ˈdaɪpoʊlz]

n. [物化]偶极;[物]偶极子(dipole 的复数);偶极天线

英英释义

Dipoles are pairs of equal and opposite electric charges or magnetic poles separated by a distance.

偶极子是一对相等且相反的电荷或磁极,彼此之间有一定距离。

In physics, dipoles are often used to describe the behavior of molecules in an electric field.

在物理学中,偶极子常用于描述分子在电场中的行为。

单词用法

magnetic dipole

磁偶极子;偶极子

electric dipole

[物]电偶极子

同义词

poles

Electric dipoles consist of two equal and opposite charges separated by a distance.

电偶极子由两个相等且相反的电荷组成,间隔一定距离。

反义词

monopole

单极

A monopole is a theoretical particle that has only one magnetic pole.

单极是一个理论粒子,只有一个磁极。

nonpolar

非极性

Nonpolar molecules do not have distinct poles and are evenly distributed.

非极性分子没有明显的极性,分布均匀。

例句

1.The theory basis is given that using the model of magnetic dipoles to substitute the magnet model.

给出利用磁偶极子模型代替小磁石模型的理论及实际依据。

2.Dipoles, Quadrupoles. Azimuthal Symmetry. Magnetostatics, Charge Conservation and Magnetic Force.

偶极,四极。方位角对称。静磁,带电量守恒及磁力。

3.A general formula is given for calculating the mutual impedance be tween two dipoles by means of the induced electromotive method and the field transformation formula.

本文采用感应电动势法和场量变换公式给出了计算二振子互阻抗的一般公式。

4.A general formula is given for calculating the mutual impedance be tween two dipoles by means of the induced electromotive method and the field transformation formula.

本文采用感应电动势法和场量变换公式给出了计算二振子互阻抗的一般公式。

5.The microtubule is simplified as linear distribution of dipoles.

把微管的构象简化为若干电偶极子的线性排列。

6.Medium frequencies and horizontal magnetic dipoles (vertical loop antennas) can be used in underground radio communication in mining sections of coal mines.

中频频率和水平磁偶极子天线(垂直环状天线)是井下采区无线通信可使用的频段和天线型式。

7.The structure can also greatly increase the gain of dipoles and possess good practical engineering application.

该结构同样能极大提高增益,且更具有工程实用性。

8.We treat magnetic dipoles as circulation equivalently, apply the reciprocity principle, and give a method of the spatial distribution of a magnetic field.

对磁偶极子作环流等效处理,应用互易定理,给出了确定磁场空间分布的一种方法。

9.This phenomenon was explained by a model based on filamentary conduction disturbed by dipoles in view of experimental results.

在此基础上,结合文献提出了偶极矩微扰下的细丝传导模式来解释这种现象。

10.In the study of electromagnetic fields, we often analyze the interactions between different types of dipoles (偶极子).

在电磁场的研究中,我们经常分析不同类型的dipoles(偶极子)之间的相互作用。

11.The dipoles (偶极子) in a molecule can affect its solubility in different solvents.

分子中的dipoles(偶极子)可以影响其在不同溶剂中的溶解度。

12.In physics, the concept of dipoles (偶极子) is essential for understanding magnetic fields.

在物理学中,dipoles(偶极子)的概念对于理解磁场至关重要。

13.When exposed to an external electric field, dipoles (偶极子) tend to align themselves with the field.

当暴露在外部电场中时,dipoles(偶极子)倾向于与电场对齐。

14.Molecular dipoles (偶极子) play a crucial role in determining the physical properties of substances.

分子dipoles(偶极子)在决定物质的物理性质方面起着至关重要的作用。

作文

In the world of physics and chemistry, understanding the concept of dipoles is crucial for grasping how molecules interact with each other. A dipole refers to a separation of positive and negative charges within a molecule, leading to the formation of a positive end and a negative end. This characteristic is particularly important in polar molecules, where the distribution of electrons is uneven. For instance, water (H2O) is a classic example of a polar molecule that exhibits dipoles. The oxygen atom is more electronegative than the hydrogen atoms, which creates a partial negative charge near the oxygen and a partial positive charge near the hydrogens, resulting in a molecular dipole.The significance of dipoles extends beyond mere molecular structure; it plays a vital role in determining the physical properties of substances. For example, the polarity of a molecule affects its boiling and melting points, solubility, and reactivity. Polar substances tend to dissolve well in polar solvents, while non-polar substances are more soluble in non-polar solvents. This principle is essential in various fields, including environmental science, biology, and materials science.Moreover, dipoles are not limited to individual molecules. In larger systems, such as ionic compounds or even biological membranes, the interaction between multiple dipoles can lead to complex behaviors. For instance, the arrangement of dipoles in a lipid bilayer can influence the fluidity and permeability of cell membranes, which is fundamental for cellular function.In addition to their role in molecular interactions, dipoles are also significant in the context of electromagnetic theory. An oscillating electric dipole can emit electromagnetic radiation, which is the basis for many technologies, including antennas and wireless communication. Understanding how dipoles radiate energy helps engineers design better communication systems and improve signal transmission.Furthermore, the concept of dipoles can be applied to various scientific disciplines, including geology, where the Earth's magnetic field can be modeled as a giant dipole. This modeling helps scientists understand geomagnetic phenomena and navigate the complexities of Earth's magnetic environment.In conclusion, dipoles are a fundamental concept in science that bridges various disciplines. From the molecular level to large-scale phenomena, the implications of dipoles are profound and far-reaching. As we continue to explore the intricacies of the natural world, the understanding of dipoles will undoubtedly remain a key element in unraveling the mysteries of chemistry, physics, and beyond. By comprehending how dipoles function, we can better appreciate the interconnectedness of different scientific fields and their applications in real-world scenarios.

在物理和化学的世界中,理解偶极子的概念对于掌握分子之间的相互作用至关重要。偶极子指的是分子内正负电荷的分离,导致形成一个正端和一个负端。这一特性在极性分子中尤为重要,因为电子的分布不均。例如,水(H2O)就是一个典型的极性分子,表现出偶极子。氧原子比氢原子更具电负性,这在氧附近产生部分负电荷,而在氢附近产生部分正电荷,从而导致分子偶极子的形成。偶极子的重要性不仅限于分子结构;它在决定物质的物理性质方面发挥着重要作用。例如,分子的极性影响其沸点和熔点、溶解度和反应性。极性物质往往在极性溶剂中溶解良好,而非极性物质在非极性溶剂中更易溶解。这一原理在环境科学、生物学和材料科学等多个领域至关重要。此外,偶极子不仅限于单个分子。在较大的系统中,例如离子化合物或生物膜,多重偶极子之间的相互作用可以导致复杂的行为。例如,脂质双层中偶极子的排列可以影响细胞膜的流动性和通透性,这对细胞功能至关重要。除了在分子相互作用中的作用外,偶极子在电磁理论的背景下也具有重要意义。一个振荡的电偶极子可以发射电磁辐射,这是许多技术的基础,包括天线和无线通信。理解偶极子如何辐射能量有助于工程师设计更好的通信系统并改善信号传输。此外,偶极子的概念还可以应用于各种科学学科,包括地质学,在这里,地球的磁场可以被建模为一个巨大的偶极子。这种建模帮助科学家理解地磁现象,并导航地球磁环境的复杂性。总之,偶极子是科学中的一个基本概念,连接着各个学科。从分子水平到大规模现象,偶极子的影响深远且广泛。随着我们继续探索自然世界的复杂性,理解偶极子无疑将仍然是揭示化学、物理及其他领域奥秘的关键元素。通过理解偶极子的功能,我们可以更好地欣赏不同科学领域及其在现实场景中的应用之间的相互联系。