spherical meniscus

简明释义

球形弯月面

英英释义

A spherical meniscus is the curved surface of a liquid in a container, which forms a convex or concave shape due to surface tension and the interaction between the liquid and the container's walls.

球形弯液面是液体在容器中形成的曲面,由于表面张力和液体与容器壁之间的相互作用,形成凸面或凹面的形状。

例句

1.The spherical meniscus is a result of surface tension, which causes the liquid to curve upward at the edges.

由于表面张力,球面凹液面使液体在边缘向上弯曲。

2.In a capillary tube, the liquid rises and forms a spherical meniscus due to adhesive forces.

在毛细管中,由于粘附力,液体上升并形成球面凹液面

3.When measuring the volume of the liquid, make sure to read the level at the bottom of the spherical meniscus.

在测量液体体积时,确保在球面凹液面的底部读取液位。

4.Understanding the behavior of a spherical meniscus is crucial for accurate pipetting in laboratories.

理解球面凹液面的行为对于实验室中准确移液至关重要。

5.The water forms a spherical meniscus in the glass, indicating the curvature of the liquid's surface.

水在玻璃中形成一个球面凹液面,显示出液体表面的弯曲。

作文

In the realm of physics and chemistry, the concept of a spherical meniscus (球面弯液面) plays a significant role in understanding the behavior of liquids in various contexts. A spherical meniscus occurs when a liquid is placed in a container, and the surface of the liquid curves due to the forces of cohesion and adhesion. This phenomenon can be observed in everyday life, such as when water is held in a glass or when mercury is contained in a thermometer.The shape of the spherical meniscus is primarily influenced by the interactions between the liquid molecules and the surface of the container. For instance, when water is in a glass container, the adhesive forces between the water molecules and the glass are stronger than the cohesive forces among the water molecules themselves. This results in a concave meniscus, where the liquid surface dips down at the edges. Conversely, with mercury, the cohesive forces dominate, leading to a convex meniscus, where the liquid surface bulges upward at the edges.Understanding the properties of a spherical meniscus is crucial in various scientific applications. For example, in laboratory settings, precise measurements of liquid volumes often rely on the accurate reading of the meniscus. Scientists must ensure that their eyes are level with the bottom of the spherical meniscus to avoid parallax errors, which can lead to inaccurate conclusions in experiments.Moreover, the study of spherical meniscus shapes extends beyond simple liquid measurements. In fields such as biology and materials science, the behavior of liquid interfaces can influence processes like cell adhesion and the formation of thin films. For instance, the way a cell interacts with its surrounding liquid environment can affect its growth and function, making the understanding of meniscus shapes vital for advancements in biotechnology.In addition, the principles behind spherical meniscus formation are also applicable in engineering. The design of various devices, such as inkjet printers and microfluidic systems, must take into account how liquids behave at interfaces. Engineers often manipulate the meniscus shape to control the flow of liquids, ensuring that processes are efficient and effective.Furthermore, the spherical meniscus phenomenon is not limited to static conditions. When liquids are subjected to external forces, such as vibrations or changes in temperature, the meniscus can change dynamically. This aspect is particularly important in industries where fluid dynamics play a critical role, such as petroleum extraction and pharmaceuticals.In conclusion, the spherical meniscus (球面弯液面) is a fundamental concept that bridges various scientific disciplines. Its significance ranges from practical applications in laboratories to theoretical implications in physics and engineering. By understanding the factors that influence the shape of the spherical meniscus, scientists and engineers can harness this knowledge to innovate and improve technologies that rely on liquid behavior. As we continue to explore the intricacies of fluid dynamics, the spherical meniscus will undoubtedly remain a topic of interest and importance in both research and application.

在物理和化学领域,spherical meniscus(球面弯液面)的概念在理解液体在各种背景下的行为方面起着重要作用。当液体放置在容器中时,由于内聚力和附着力的作用,液体表面会弯曲,这种现象称为spherical meniscus。我们在日常生活中可以观察到这一现象,例如当水被盛在玻璃杯中或当汞被装在温度计中时。spherical meniscus的形状主要受液体分子与容器表面之间相互作用的影响。例如,当水在玻璃容器中时,水分子与玻璃之间的附着力强于水分子之间的内聚力。这导致了一个凹面的弯液面,即液体表面在边缘向下凹陷。相反,在汞的情况下,内聚力占主导地位,从而形成凸面的弯液面,即液体表面在边缘向上隆起。理解spherical meniscus的特性在各种科学应用中至关重要。例如,在实验室环境中,液体体积的精确测量通常依赖于对弯液面的准确读取。科学家必须确保他们的视线与spherical meniscus的底部平行,以避免视差误差,这可能导致实验结论不准确。此外,spherical meniscus形状的研究不仅限于简单的液体测量。在生物学和材料科学等领域,液体界面的行为可以影响细胞粘附和薄膜的形成。例如,细胞如何与周围的液体环境相互作用可以影响其生长和功能,因此对弯液面形状的理解对生物技术的进步至关重要。此外,spherical meniscus形成背后的原理也适用于工程学。各种设备的设计,例如喷墨打印机和微流体系统,必须考虑液体在界面上的行为。工程师通常操控弯液面形状以控制液体流动,确保过程高效有效。此外,spherical meniscus现象不仅限于静态条件。当液体受到外部力量,例如振动或温度变化时,弯液面可以动态变化。这一点在流体动力学起着关键作用的行业中尤为重要,例如石油开采和制药。总之,spherical meniscus(球面弯液面)是一个基本概念,连接了各个科学学科。它的重要性从实验室中的实际应用到物理和工程中的理论意义不一而足。通过理解影响spherical meniscus形状的因素,科学家和工程师可以利用这一知识来创新和改善依赖液体行为的技术。随着我们继续探索流体动力学的复杂性,spherical meniscus无疑将继续成为研究和应用中感兴趣和重要的主题。

相关单词

spherical

spherical详解:怎么读、什么意思、用法

meniscus

meniscus详解:怎么读、什么意思、用法