rutherford scattering formula
简明释义
卢瑟福散射公式
英英释义
例句
1.Researchers applied the rutherford scattering formula 拉塞福散射公式 to study the properties of new materials at the atomic level.
研究人员应用拉塞福散射公式 rutherford scattering formula 来研究新材料在原子层面的性质。
2.The derivation of the rutherford scattering formula 拉塞福散射公式 involves complex mathematics and assumptions about atomic structure.
拉塞福散射公式 rutherford scattering formula 的推导涉及复杂的数学和关于原子结构的假设。
3.In nuclear physics, the rutherford scattering formula 拉塞福散射公式 is essential for understanding how alpha particles interact with atomic nuclei.
在核物理学中,拉塞福散射公式 rutherford scattering formula 对于理解α粒子与原子核的相互作用至关重要。
4.The experiment confirmed the predictions made by the rutherford scattering formula 拉塞福散射公式 regarding the deflection of particles.
实验确认了拉塞福散射公式 rutherford scattering formula 对粒子偏转的预测。
5.Students often use the rutherford scattering formula 拉塞福散射公式 in their lab reports to calculate scattering angles.
学生们通常在实验报告中使用拉塞福散射公式 rutherford scattering formula 来计算散射角度。
作文
The study of atomic structure has fascinated scientists for centuries, and one of the pivotal moments in this field was the discovery of the rutherford scattering formula. This formula, derived from experiments conducted by Ernest Rutherford in 1911, describes how positively charged alpha particles scatter when they encounter a dense nucleus. Rutherford's experiments involved firing alpha particles at a thin gold foil and observing their deflections. The results were surprising; while most particles passed through the foil, a small fraction were deflected at large angles, indicating that they were encountering something much more massive than themselves. This led to the conclusion that atoms consist of a small, dense nucleus surrounded by electrons, fundamentally changing our understanding of atomic structure.The rutherford scattering formula quantitatively describes this scattering process. It is based on the principles of classical mechanics and electrostatics, particularly Coulomb's law, which states that like charges repel and opposite charges attract. The formula itself can be expressed as:\[ \frac{d\sigma}{d\Omega} = \frac{(Z_1 Z_2 e^2)^2}{16 \pi \epsilon_0 E^2} \cdot \frac{1}{(1 + \frac{2Z_1 Z_2 e^2}{E R})^2} \]\In this equation, \(d\sigma/d\Omega\) represents the differential cross-section, which is a measure of the likelihood of scattering at a certain angle. \(Z_1\) and \(Z_2\) are the atomic numbers of the incident particle and the target nucleus, respectively, while \(e\) is the elementary charge, \(\epsilon_0\) is the permittivity of free space, and \(E\) is the energy of the incoming particle. The term \(R\) denotes the distance of closest approach between the alpha particle and the nucleus.Understanding the rutherford scattering formula is crucial not only for historical context but also for its implications in modern physics. It laid the groundwork for quantum mechanics and nuclear physics, influencing the development of models that describe atomic behavior. For instance, the idea of a nucleus at the center of the atom paved the way for the Bohr model, which introduced quantized energy levels for electrons.Moreover, the rutherford scattering formula has applications beyond theoretical physics. It is used in various fields such as material science, chemistry, and even medical physics. In materials science, researchers utilize scattering techniques to investigate the properties of materials at the atomic level. In chemistry, understanding atomic interactions helps in predicting reaction outcomes. In medical physics, similar principles are applied in radiation therapy, where the scattering of particles is critical for targeting tumors while minimizing damage to surrounding healthy tissue.In conclusion, the rutherford scattering formula is not just a historical artifact; it is a fundamental component of our understanding of atomic structure and interactions. Its derivation marked a significant shift in scientific thought, leading to advancements in numerous fields. As we continue to explore the complexities of matter, the principles encapsulated in this formula remain relevant, guiding new discoveries and innovations in science and technology.
原子结构的研究几个世纪以来一直吸引着科学家,而这一领域的一个关键时刻是发现了卢瑟福散射公式。这个公式源于厄尼斯特·卢瑟福在1911年进行的实验,描述了带正电的阿尔法粒子在遇到密集核时的散射情况。卢瑟福的实验涉及向薄金箔发射阿尔法粒子并观察它们的偏转。结果令人惊讶;虽然大多数粒子穿过了金箔,但一小部分粒子却以大角度偏转,这表明它们遇到了比自己重得多的物体。这导致了这样的结论:原子由一个小而密集的核和周围的电子组成,根本改变了我们对原子结构的理解。卢瑟福散射公式定量描述了这一散射过程。它基于经典力学和静电学的原理,特别是库仑定律,该定律指出同种电荷相互排斥,异种电荷相互吸引。该公式本身可以表达为:\[ \frac{d\sigma}{d\Omega} = \frac{(Z_1 Z_2 e^2)^2}{16 \pi \epsilon_0 E^2} \cdot \frac{1}{(1 + \frac{2Z_1 Z_2 e^2}{E R})^2} \]\在这个方程中,\(d\sigma/d\Omega\)表示微分截面,这是散射在某一角度发生的可能性度量。\(Z_1\)和\(Z_2\)分别是入射粒子和目标核的原子序数,而\(e\)是基本电荷,\(\epsilon_0\)是自由空间的电容率,\(E\)是入射粒子的能量。术语\(R\)表示阿尔法粒子与核之间的最近接触距离。理解卢瑟福散射公式不仅对历史背景至关重要,而且对其在现代物理学中的影响也至关重要。它为量子力学和核物理奠定了基础,影响了描述原子行为的模型的发展。例如,原子中心有一个核的概念为玻尔模型铺平了道路,该模型引入了电子的量子化能级。此外,卢瑟福散射公式在理论物理之外还有广泛的应用。它被用于材料科学、化学甚至医学物理等多个领域。在材料科学中,研究人员利用散射技术研究材料在原子层面的性质。在化学中,理解原子间的相互作用有助于预测反应结果。在医学物理中,类似的原理应用于放射治疗,其中粒子的散射对于靶向肿瘤至关重要,同时最小化对周围健康组织的损害。总之,卢瑟福散射公式不仅仅是一个历史文物;它是我们理解原子结构和相互作用的基本组成部分。它的推导标志着科学思想的重大转变,导致了众多领域的进步。随着我们继续探索物质的复杂性,这一公式所包含的原则仍然具有相关性,指导着科学和技术的新发现和创新。
相关单词