resonance capture of neutrons

简明释义

中子共振俘获

英英释义

Resonance capture of neutrons refers to the process in which neutrons are absorbed by atomic nuclei at specific energy levels, known as resonance energies, leading to nuclear reactions or the formation of heavier isotopes.

中子共振捕获是指中子在特定能级(称为共振能量)下被原子核吸收的过程,导致核反应或更重同位素的形成。

例句

1.The process of resonance capture of neutrons 中子的共振捕获 is crucial in nuclear reactors for controlling fission rates.

在核反应堆中,中子的共振捕获 resonance capture of neutrons 的过程对于控制裂变速率至关重要。

2.In astrophysics, the resonance capture of neutrons 中子的共振捕获 plays a significant role in nucleosynthesis during supernova explosions.

在天体物理学中,中子的共振捕获 resonance capture of neutrons 在超新星爆炸期间的核合成中扮演着重要角色。

3.The resonance capture of neutrons 中子的共振捕获 can lead to the formation of heavier isotopes in certain materials.

在某些材料中,中子的共振捕获 resonance capture of neutrons 可以导致更重同位素的形成。

4.Understanding the resonance capture of neutrons 中子的共振捕获 is essential for developing advanced nuclear technologies.

理解 中子的共振捕获 resonance capture of neutrons 对于开发先进的核技术至关重要。

5.Researchers are studying the resonance capture of neutrons 中子的共振捕获 to improve the efficiency of nuclear fuel.

研究人员正在研究 中子的共振捕获 resonance capture of neutrons 以提高核燃料的效率。

作文

The study of nuclear physics has revealed many fascinating phenomena, one of which is the resonance capture of neutrons (中子共振俘获). This process occurs when a neutron collides with a nucleus and is captured by it at specific energy levels, known as resonance levels. Understanding this concept is crucial for various applications, including nuclear reactors, medical imaging, and even in the field of astrophysics. When a neutron approaches a nucleus, it can either be scattered or absorbed. The likelihood of absorption increases significantly when the neutron's energy matches the resonance energies of the target nucleus. This phenomenon is akin to how a musician finds the right note to resonate with an instrument; only at the correct frequency does the sound amplify. In nuclear terms, the 'frequency' refers to the energy of the incoming neutron. In practical applications, the resonance capture of neutrons (中子共振俘获) plays a vital role in the operation of nuclear reactors. For instance, in a reactor, controlling the population of neutrons is essential for sustaining a chain reaction. By understanding which isotopes have resonance capture characteristics, engineers can design reactors that optimize fuel use and minimize waste. This knowledge allows them to select materials that will either absorb or reflect neutrons effectively, ensuring a stable and efficient reaction. Moreover, in medical applications, the resonance capture of neutrons (中子共振俘获) is utilized in neutron capture therapy, a form of cancer treatment. In this therapy, certain drugs are administered to patients that preferentially accumulate in cancer cells. When these cells are then exposed to a neutron beam, the neutrons are captured by the drug within the cancerous cells, resulting in localized radiation damage that kills the tumor while sparing surrounding healthy tissue. This method highlights the importance of understanding neutron interactions at a fundamental level. Astrophysicists also benefit from studying the resonance capture of neutrons (中子共振俘获). In stars, particularly during supernova explosions, neutrons play a critical role in the nucleosynthesis of heavy elements. The conditions in these extreme environments lead to rapid neutron capture processes, which contribute to the formation of elements heavier than iron. By examining how neutrons resonate with different nuclei, scientists can better understand the processes that govern stellar evolution and the creation of the universe's chemical diversity. In conclusion, the resonance capture of neutrons (中子共振俘获) is a fundamental concept in nuclear physics that has far-reaching implications across multiple fields. From enhancing the safety and efficiency of nuclear reactors to providing innovative cancer treatments and unraveling the mysteries of the cosmos, this phenomenon illustrates the interconnectedness of scientific disciplines. As research continues to evolve, our comprehension of neutron behavior will likely lead to even more groundbreaking advancements in technology and medicine, underscoring the importance of this intriguing aspect of nuclear science.

核物理的研究揭示了许多迷人的现象,其中之一就是中子共振俘获。这个过程发生在中子与原子核碰撞并在特定能级下被捕获,称为共振能级。理解这个概念对于各种应用至关重要,包括核反应堆、医学成像,甚至在天体物理学领域。 当中子接近原子核时,它可以被散射或吸收。当中子的能量与目标原子核的共振能量匹配时,吸收的可能性显著增加。这种现象类似于音乐家找到与乐器共鸣的正确音符;只有在正确的频率下,声音才会放大。在核物理学中,“频率”指的是进入中子的能量。 在实际应用中,中子共振俘获在核反应堆的运行中发挥着重要作用。例如,在反应堆中,控制中子的数量对于维持链式反应至关重要。通过了解哪些同位素具有共振捕获特性,工程师可以设计出优化燃料使用和最小化废物的反应堆。这种知识使他们能够选择有效吸收或反射中子的材料,从而确保反应的稳定和高效。 此外,在医学应用中,中子共振俘获被用于中子俘获疗法,这是一种癌症治疗方法。在这种疗法中,某些药物被施用于患者,这些药物会优先积聚在癌细胞中。当这些细胞暴露于中子束时,中子被药物捕获,导致局部辐射损伤,杀死肿瘤,同时保护周围健康组织。这种方法突显了理解中子相互作用的重要性。 天体物理学家也从研究中子共振俘获中受益。在恒星中,特别是在超新星爆炸期间,中子在重元素的核合成中发挥着关键作用。这些极端环境下的条件导致快速中子捕获过程,这有助于形成比铁重的元素。通过检查中子如何与不同的原子核共振,科学家们可以更好地理解支配恒星演化和宇宙化学多样性形成的过程。 总之,中子共振俘获是核物理中的一个基本概念,对多个领域有着深远的影响。从提高核反应堆的安全性和效率到提供创新的癌症治疗以及揭开宇宙的奥秘,这一现象展示了科学学科之间的相互联系。随着研究的不断发展,我们对中子行为的理解可能会导致技术和医学方面更多突破性的进展,突显了这一核科学迷人方面的重要性。

相关单词

neutrons

neutrons详解:怎么读、什么意思、用法