resonance absorption integral

简明释义

共振吸收积分

英英释义

The resonance absorption integral is a mathematical expression that quantifies the amount of energy absorbed by a medium at specific resonant frequencies, typically used in the context of wave propagation and scattering.

共振吸收积分是一个数学表达式,用于量化介质在特定共振频率下吸收的能量,通常用于波传播和散射的上下文中。

例句

1.Researchers used the resonance absorption integral 共振吸收积分 to analyze the spectral lines of the gas.

研究人员使用共振吸收积分 resonance absorption integral 来分析气体的光谱线。

2.In quantum mechanics, the calculation of the resonance absorption integral 共振吸收积分 is crucial for understanding energy transitions.

在量子力学中,计算共振吸收积分 resonance absorption integral 对于理解能量跃迁至关重要。

3.The accuracy of the resonance absorption integral 共振吸收积分 directly affects the results of spectroscopic experiments.

共振吸收积分 resonance absorption integral 的准确性直接影响光谱实验的结果。

4.In astrophysics, the resonance absorption integral 共振吸收积分 is used to study the absorption features of distant stars.

在天体物理学中,共振吸收积分 resonance absorption integral 用于研究遥远恒星的吸收特征。

5.The resonance absorption integral 共振吸收积分 helps in predicting the behavior of particles under certain conditions.

共振吸收积分 resonance absorption integral 有助于预测粒子在特定条件下的行为。

作文

In the field of physics and engineering, understanding the interaction between waves and matter is crucial. One important concept that arises in this context is the resonance absorption integral. This term refers to a mathematical representation that quantifies how much energy is absorbed by a medium when it is exposed to oscillating waves at specific frequencies. The resonance absorption integral plays a vital role in various applications, from designing efficient materials to analyzing the behavior of systems in different environments.To grasp the significance of the resonance absorption integral, we must first consider what resonance means. Resonance occurs when a system is driven by an external force at a frequency that matches its natural frequency. This results in a dramatic increase in amplitude, leading to significant energy transfer. In many cases, this energy is absorbed by the material, which can cause changes in its properties or even lead to structural failure if not properly managed.The resonance absorption integral mathematically describes this phenomenon by integrating the absorption coefficient over the range of frequencies where resonance occurs. This coefficient indicates how effectively a material absorbs energy at a given frequency. By calculating the integral, engineers and scientists can predict how much energy will be absorbed by the material, which is crucial for ensuring safety and efficiency in design.For instance, in the construction of buildings, understanding the resonance absorption integral helps architects and engineers choose appropriate materials that can withstand environmental forces, such as wind or seismic activity. If a building's natural frequency coincides with the frequency of these forces, resonance can occur, leading to catastrophic failure. Therefore, by analyzing the resonance absorption integral, they can select materials that minimize the risk of resonance-related damage.Moreover, the resonance absorption integral is also significant in the field of acoustics. Musicians and sound engineers utilize this concept to create instruments that produce desired sounds. By understanding how different materials absorb sound at various frequencies, they can design instruments that resonate well and produce rich tones. This application extends to architectural acoustics, where the goal is to enhance sound quality in concert halls and theaters.In addition to practical applications, the resonance absorption integral has theoretical implications in the study of wave phenomena. Researchers use it to explore complex interactions between waves and materials, leading to advancements in fields such as optics and quantum mechanics. Understanding these interactions can pave the way for innovations in technology, such as improved sensors and communication devices.In conclusion, the resonance absorption integral is a fundamental concept that bridges theory and application across various scientific disciplines. Its ability to quantify energy absorption at resonant frequencies provides valuable insights for engineers, architects, musicians, and researchers alike. As we continue to explore the complexities of wave-matter interactions, the importance of the resonance absorption integral will undoubtedly grow, highlighting the need for ongoing study and application in our increasingly interconnected world.

在物理和工程领域,理解波与物质之间的相互作用至关重要。一个在此背景下出现的重要概念是共振吸收积分。这个术语指的是一个数学表述,用于量化当介质暴露于特定频率的振荡波时吸收了多少能量。共振吸收积分在各种应用中发挥着重要作用,从设计高效材料到分析不同环境中系统的行为。要理解共振吸收积分的重要性,我们首先必须考虑共振的含义。当一个系统受到与其自然频率匹配的外部力驱动时,就会发生共振。这会导致幅度的剧烈增加,从而导致显著的能量转移。在许多情况下,这种能量被材料吸收,这可能会导致其性质的变化,甚至在没有适当管理的情况下导致结构失效。共振吸收积分通过对共振发生频率范围内的吸收系数进行积分,数学上描述了这一现象。这个系数表示材料在给定频率下吸收能量的有效性。通过计算这个积分,工程师和科学家可以预测材料将吸收多少能量,这对于确保设计的安全性和效率至关重要。例如,在建筑物的建设中,理解共振吸收积分帮助建筑师和工程师选择合适的材料,以承受环境力量,如风或地震活动。如果建筑物的自然频率与这些力量的频率重合,就会发生共振,导致灾难性故障。因此,通过分析共振吸收积分,他们可以选择能够最小化与共振相关的损坏风险的材料。此外,共振吸收积分在声学领域也具有重要意义。音乐家和音响工程师利用这个概念来创造产生所需声音的乐器。通过理解不同材料在各种频率下如何吸收声音,他们可以设计出能够良好共振并产生丰富音色的乐器。这一应用扩展到建筑声学,其中目标是在音乐厅和剧院中增强音质。除了实际应用之外,共振吸收积分在波现象研究中的理论意义也不容忽视。研究人员利用它探索波与材料之间的复杂相互作用,从而推动光学和量子力学等领域的进展。理解这些相互作用可以为技术创新铺平道路,例如改进传感器和通信设备。总之,共振吸收积分是一个基本概念,桥接了各个科学学科之间的理论和应用。它量化共振频率下的能量吸收能力,为工程师、建筑师、音乐家和研究人员提供了宝贵的见解。随着我们继续探索波与物质相互作用的复杂性,共振吸收积分的重要性无疑会增长,突显出在我们日益互联的世界中继续研究和应用的必要性。

相关单词

absorption

absorption详解:怎么读、什么意思、用法

integral

integral详解:怎么读、什么意思、用法