relative mass excess

简明释义

相对单位质量过剩

英英释义

Relative mass excess is the difference between the actual mass of a nuclide and its mass number, expressed as a fraction of the mass number.

相对质量过剩是指某一核素的实际质量与其质量数之间的差异,以质量数的分数形式表示。

例句

1.In particle physics, the relative mass excess 相对质量过剩 helps in determining the binding energy of nuclei.

在粒子物理中,相对质量过剩 relative mass excess 有助于确定原子核的结合能。

2.The relative mass excess 相对质量过剩 can indicate whether a nucleus is stable or unstable.

相对质量过剩 relative mass excess 可以指示一个原子核是稳定还是不稳定。

3.Calculating the relative mass excess 相对质量过剩 involves using precise measurements of atomic masses.

计算相对质量过剩 relative mass excess 涉及使用原子质量的精确测量。

4.Researchers often refer to the relative mass excess 相对质量过剩 when discussing isotopes.

研究人员在讨论同位素时经常提到相对质量过剩 relative mass excess

5.The calculation of the relative mass excess 相对质量过剩 is crucial for understanding nuclear stability.

计算相对质量过剩 relative mass excess 对于理解核稳定性至关重要。

作文

The concept of relative mass excess is an essential aspect of nuclear physics and chemistry, particularly when analyzing the stability of atomic nuclei. To understand this term, we must first recognize that every atomic nucleus has a certain mass that can be measured in atomic mass units (amu). However, the actual mass of a nucleus is often less than the sum of the masses of its constituent protons and neutrons. This discrepancy arises due to the binding energy that holds the nucleus together, which, according to Einstein's mass-energy equivalence principle, results in a loss of mass. The relative mass excess is defined as the difference between the observed mass of a nucleus and the mass number, expressed as a fraction of the mass number itself.In practical terms, the relative mass excess can be calculated using the formula: Relative Mass Excess = (Observed Mass - Mass Number) / Mass Number.This formula provides a way to quantify how much 'extra' mass exists in a nucleus compared to what would be expected based solely on the number of nucleons it contains. For instance, if we consider a stable isotope of carbon, such as carbon-12, its mass is slightly less than the total mass of its six protons and six neutrons. By calculating the relative mass excess, scientists can gain insights into the binding energy of the nucleus, which is crucial for understanding nuclear reactions and stability.Understanding relative mass excess is not just an academic exercise; it has real-world applications in fields like nuclear medicine and energy production. For example, in nuclear medicine, isotopes with specific relative mass excess values are used in diagnostic imaging and treatment procedures. Similarly, in nuclear power plants, the principles of relative mass excess help engineers design reactors that harness the energy released during fission reactions efficiently.Moreover, the concept is vital in research areas such as astrophysics, where the formation of elements in stars is heavily influenced by nuclear processes. The relative mass excess of different isotopes can provide clues about the conditions under which they were formed. For instance, during stellar nucleosynthesis, the balance of forces within a star influences the types of elements produced and their respective relative mass excess values.In conclusion, the term relative mass excess encapsulates a critical feature of nuclear structure and stability. By examining the differences between the expected and observed masses of nuclei, scientists can derive important information about the forces at play within atomic structures. This understanding not only enhances our fundamental knowledge of physics and chemistry but also paves the way for advancements in technology and medicine. As we continue to explore the universe at its most fundamental levels, the implications of relative mass excess will undoubtedly remain a focal point of scientific inquiry and discovery.

“相对质量过剩”这一概念是核物理和化学中的一个重要方面,特别是在分析原子核的稳定性时。要理解这个术语,我们首先必须认识到每个原子核都有一定的质量,可以用原子质量单位(amu)来测量。然而,原子核的实际质量通常小于其组成质子和中子的质量总和。这种差异是由于保持原子核结合的结合能,而根据爱因斯坦的质量-能量等价原理,这会导致质量的损失。“相对质量过剩”被定义为观察到的原子核质量与质量数之间的差异,表示为质量数本身的一个分数。在实际应用中,“相对质量过剩”的计算公式为:相对质量过剩 = (观察到的质量 - 质量数)/ 质量数。这个公式提供了一种量化原子核内存在多少“额外”质量的方法,相对于仅根据其包含的核子数量所预期的质量。例如,如果我们考虑碳的一个稳定同位素,如碳-12,其质量略低于其六个质子和六个中子的总质量。通过计算“相对质量过剩”,科学家可以深入了解原子核的结合能,这对于理解核反应和稳定性至关重要。理解“相对质量过剩”不仅仅是学术上的练习;它在核医学和能源生产等领域有着实际的应用。例如,在核医学中,具有特定“相对质量过剩”值的同位素用于诊断成像和治疗程序。同样,在核电站, “相对质量过剩”的原理帮助工程师设计有效利用裂变反应中释放的能量的反应堆。此外,这一概念在天体物理等研究领域也至关重要,星星中元素的形成受到核过程的严重影响。不同同位素的“相对质量过剩”可以提供关于它们形成条件的线索。例如,在恒星核合成过程中,星内的力平衡影响产生的元素类型及其各自的“相对质量过剩”值。总之,“相对质量过剩”这一术语概括了核结构和稳定性的一个关键特征。通过检查原子核的预期和观察质量之间的差异,科学家可以推导出有关原子结构内作用力的重要信息。这种理解不仅增强了我们对物理和化学的基本知识,而且为技术和医学的进步铺平了道路。随着我们继续探索宇宙最基本的层面,“相对质量过剩”的意义无疑将继续成为科学探究和发现的焦点。

相关单词

relative

relative详解:怎么读、什么意思、用法