reactor cross section

简明释义

反应堆截面

英英释义

The reactor cross section is a measure of the probability of a specific interaction occurring between neutrons and nuclei within a nuclear reactor, typically expressed in units of area.

反应堆截面是一个衡量中子与核反应堆内原子核之间特定相互作用发生概率的指标,通常以面积单位表示。

例句

1.Accurate measurements of the reactor cross section 反应堆截面 can help in predicting reactor behavior under different conditions.

反应堆截面 reactor cross section 的准确测量可以帮助预测反应堆在不同条件下的行为。

2.The reactor cross section 反应堆截面 is often used in simulations to model neutron interactions.

反应堆截面 reactor cross section 通常用于模拟中建模中子相互作用。

3.The calculation of the reactor cross section 反应堆截面 is crucial for determining the neutron flux in a nuclear reactor.

计算反应堆截面 reactor cross section 对于确定核反应堆中的中子通量至关重要。

4.Engineers must consider the reactor cross section 反应堆截面 when designing safety systems for nuclear reactors.

工程师在设计核反应堆的安全系统时必须考虑反应堆截面 reactor cross section

5.Researchers are developing new materials to improve the reactor cross section 反应堆截面 for better efficiency.

研究人员正在开发新材料,以改善反应堆截面 reactor cross section,以提高效率。

作文

The concept of a reactor cross section is fundamental in the field of nuclear engineering and reactor physics. It refers to a measure of the probability of a specific interaction between neutrons and nuclei within a reactor. The reactor cross section is typically expressed in units of area, such as barns, where one barn is equivalent to 10^-28 square meters. Understanding this concept is crucial for predicting how neutrons will behave in a nuclear reactor, which directly impacts the reactor's design and operation.In a nuclear reactor, neutrons are produced during fission reactions. These neutrons can either cause further fission events or be absorbed by other materials, such as control rods or structural components. The reactor cross section quantifies the likelihood of these interactions occurring, thus providing insights into the reactor's efficiency and safety. For instance, a high absorption reactor cross section for a material means that it is more likely to capture neutrons, which is essential for control mechanisms in the reactor.Different materials have different reactor cross sections for various types of interactions, such as scattering, absorption, and fission. For example, uranium-235 has a relatively high fission reactor cross section, making it a favorable fuel choice for many reactors. In contrast, materials like lead have low reactor cross sections for fission, but they can be useful for neutron shielding due to their scattering properties.The calculation of reactor cross sections involves complex models and simulations. Researchers utilize experimental data and theoretical frameworks to derive these values, which are essential for reactor simulations. By inputting accurate reactor cross section values into computational models, engineers can predict how a reactor will behave under different operational conditions, including changes in temperature, pressure, and fuel composition.Moreover, the reactor cross section plays a significant role in the development of new nuclear technologies. As researchers explore advanced reactor designs, such as fast reactors and thorium reactors, understanding the reactor cross section for various materials becomes increasingly important. This knowledge aids in optimizing fuel use, enhancing safety features, and minimizing waste production.In conclusion, the reactor cross section is a critical parameter in nuclear reactor design and operation. It provides valuable information about the interactions between neutrons and materials, influencing everything from fuel selection to safety protocols. As the demand for clean and efficient energy sources continues to grow, mastering the concept of reactor cross sections will remain vital for engineers and scientists working in the nuclear field. Understanding this concept not only enhances our knowledge of nuclear processes but also contributes to the advancement of sustainable energy solutions for the future.

反应堆截面这个概念在核工程和反应堆物理学领域是基础性的。它指的是在反应堆中中子与原子核之间发生特定相互作用的概率度量。反应堆截面通常以面积单位表示,如barn,其中一个barn等于10^-28平方米。理解这一概念对于预测中子在核反应堆中的行为至关重要,这直接影响到反应堆的设计和操作。在核反应堆中,中子是在裂变反应中产生的。这些中子可以导致进一步的裂变事件,或者被其他材料(如控制棒或结构组件)吸收。反应堆截面量化了这些相互作用发生的可能性,从而提供了对反应堆效率和安全性的洞察。例如,对于某种材料来说,高吸收反应堆截面意味着它更有可能捕获中子,这对于反应堆中的控制机制至关重要。不同材料对于各种类型的相互作用(如散射、吸收和裂变)具有不同的反应堆截面。例如,铀-235具有相对较高的裂变反应堆截面,使其成为许多反应堆的优选燃料。相比之下,铅的裂变反应堆截面较低,但由于其散射特性,它在中子屏蔽方面可能是有用的。反应堆截面的计算涉及复杂的模型和模拟。研究人员利用实验数据和理论框架来推导这些值,这对于反应堆模拟至关重要。通过将准确的反应堆截面值输入计算模型,工程师可以预测反应堆在不同操作条件下的表现,包括温度、压力和燃料成分的变化。此外,反应堆截面在新核技术的发展中也发挥着重要作用。随着研究人员探索先进的反应堆设计,如快中子反应堆和钍反应堆,了解各种材料的反应堆截面变得愈发重要。这一知识有助于优化燃料使用、增强安全特性以及最小化废物产生。总之,反应堆截面是核反应堆设计和操作中的关键参数。它提供了关于中子和材料之间相互作用的宝贵信息,影响从燃料选择到安全协议的方方面面。随着对清洁和高效能源来源的需求不断增长,掌握反应堆截面的概念将继续对在核领域工作的工程师和科学家至关重要。理解这一概念不仅增强了我们对核过程的认识,还促进了可持续能源解决方案的进步。