random walk
简明释义
随机游动
英英释义
例句
1.Researchers applied a random walk 随机漫步 model to analyze the spread of diseases in a population.
研究人员应用了一个random walk 随机漫步模型来分析疾病在群体中的传播。
2.A random walk 随机漫步 can describe how a drunkard stumbles around a city.
一个random walk 随机漫步可以描述一个醉汉在城市中蹒跚而行的方式。
3.The concept of a random walk 随机漫步 is used in physics to model particle diffusion.
在物理学中,random walk 随机漫步的概念用于模拟粒子扩散。
4.In computer science, algorithms based on random walk 随机漫步 can be used for network routing.
在计算机科学中,基于random walk 随机漫步的算法可以用于网络路由。
5.In finance, stock prices often follow a random walk 随机漫步, making it difficult to predict future movements.
在金融领域,股票价格通常遵循一个random walk 随机漫步,这使得预测未来走势变得困难。
作文
The concept of a random walk is fundamental in various fields, including mathematics, physics, and finance. At its core, a random walk describes a path that consists of a series of random steps. Imagine a person standing at the origin of a number line, taking steps either to the left or to the right with equal probability. This simple yet profound idea has significant implications in understanding complex systems and predicting future outcomes.In mathematics, the random walk is often used to illustrate concepts of probability and stochastic processes. It serves as a model for various phenomena, such as stock prices fluctuating over time. In finance, the efficient market hypothesis suggests that stock prices follow a random walk, meaning that past price movements cannot predict future movements. Investors who believe in this theory argue that it is impossible to outperform the market consistently, as stock prices are influenced by numerous unpredictable factors.Moreover, the random walk concept extends beyond finance into other areas of science. In physics, it can describe the movement of particles in a gas or liquid, where molecules move randomly until they collide with one another. This behavior can help scientists understand diffusion processes and the behavior of gases at different temperatures and pressures.Another fascinating application of the random walk is in ecology, where it helps explain animal foraging behavior. For example, an animal searching for food may move in a random walk pattern, exploring its environment without a specific direction. This randomness allows the animal to cover a larger area, increasing its chances of finding food sources.Despite its seemingly chaotic nature, the random walk has a surprising amount of structure when analyzed mathematically. Researchers have discovered that while individual steps may be random, the overall behavior of a random walk can be predicted in the long run. For instance, the expected distance from the starting point after a certain number of steps can be calculated, leading to intriguing insights about the nature of randomness and order.In summary, the concept of a random walk is not merely an abstract mathematical idea; it has real-world applications across various disciplines. From finance to physics and ecology, understanding the principles behind a random walk can provide valuable insights into the behavior of complex systems. As we continue to explore these ideas, we uncover the underlying patterns that govern our world, revealing the beauty of randomness intertwined with order. The study of random walks not only enhances our comprehension of probability theory but also enriches our understanding of the intricate dynamics present in nature.
“随机游走”的概念在数学、物理和金融等多个领域中都是基础性的。其核心是描述一个由一系列随机步骤组成的路径。想象一个人站在数字线的原点,以相等的概率向左或向右迈步。这一简单而深刻的理念在理解复杂系统和预测未来结果方面具有重要意义。在数学中,“随机游走”常用于说明概率和随机过程的概念。它作为各种现象的模型,例如股票价格随时间波动。在金融领域,效率市场假说认为股票价格遵循“随机游走”,这意味着过去的价格变动无法预测未来的变动。相信这一理论的投资者认为,持续超越市场是不可能的,因为股票价格受许多不可预测因素的影响。此外,“随机游走”的概念不仅限于金融,还扩展到其他科学领域。在物理学中,它可以描述气体或液体中粒子的运动,其中分子随机移动,直到相互碰撞。这种行为可以帮助科学家理解扩散过程以及气体在不同温度和压力下的行为。“随机游走”还有一个引人入胜的应用是在生态学中,它有助于解释动物觅食行为。例如,一只寻找食物的动物可能会以“随机游走”的模式移动,探索其环境而没有特定方向。这种随机性使动物能够覆盖更大的区域,从而增加找到食物来源的机会。尽管看似混乱,但“随机游走”在数学分析中具有惊人的结构。研究人员发现,虽然单个步骤可能是随机的,但从整体上来看,“随机游走”的行为在长期内是可以预测的。例如,可以计算在一定数量的步骤后,离起点的预期距离,从而洞察随机性与秩序的本质。总之,“随机游走”的概念不仅仅是一个抽象的数学思想;它在各个学科中都有现实世界的应用。从金融到物理和生态,理解“随机游走”背后的原理可以为我们提供对复杂系统行为的宝贵见解。随着我们继续探索这些思想,我们揭示了支配我们世界的基本模式,展现了随机性与秩序交织的美。对“随机游走”的研究不仅增强了我们对概率理论的理解,也丰富了我们对自然中复杂动态的认识。