radioactive isotope

简明释义

放射性同位素

英英释义

A radioactive isotope is an unstable variant of a chemical element that emits radiation as it decays into a more stable form.

放射性同位素是化学元素的不稳定变体,它在衰变为更稳定的形式时会发出辐射。

例句

1.Scientists are researching new applications for radioactive isotopes 放射性同位素 in cancer therapy.

科学家们正在研究放射性同位素在癌症治疗中的新应用。

2.In nuclear medicine, radioactive isotopes 放射性同位素 are often used for imaging and treatment.

在核医学中,放射性同位素常用于成像和治疗。

3.The radioactive isotope 放射性同位素 carbon-14 is commonly used in dating ancient artifacts.

碳-14这一放射性同位素常用于古代文物的测年。

4.The doctor used a radioactive isotope 放射性同位素 to trace the function of my thyroid gland.

医生使用了一个放射性同位素来追踪我的甲状腺功能。

5.The environmental impact of radioactive isotopes 放射性同位素 is a significant concern for researchers.

研究人员对放射性同位素的环境影响表示担忧。

作文

The study of radioactive isotope plays a crucial role in various fields, including medicine, archaeology, and environmental science. A radioactive isotope is an unstable form of an element that emits radiation as it decays into a more stable form. This process of decay can be harnessed for numerous applications, making radioactive isotopes invaluable tools in both research and practical scenarios.In medicine, radioactive isotopes are commonly used in diagnostic imaging and treatment. For instance, technetium-99m is a widely used radioactive isotope in nuclear medicine for imaging organs and tissues. It allows doctors to visualize the functioning of various organs in real time, providing critical information for diagnosis. Moreover, radioactive isotopes like iodine-131 are utilized in treating thyroid cancer. The radiation emitted from these isotopes selectively targets cancerous cells, minimizing damage to surrounding healthy tissue and improving patient outcomes.In archaeology, radioactive isotopes serve as powerful tools for dating ancient artifacts and fossils. Carbon-14 dating, for example, is a method that measures the amount of carbon-14, a radioactive isotope, remaining in organic materials. Since carbon-14 has a known half-life, scientists can determine the age of an object by measuring its remaining concentration. This technique has revolutionized our understanding of human history, allowing archaeologists to establish timelines for ancient civilizations and their practices.Environmental science also benefits significantly from the use of radioactive isotopes. Researchers employ isotopes to trace the movement of pollutants through ecosystems. By using isotopes such as cesium-137, scientists can track the distribution of contaminants in soil and water, helping to assess the impact of industrial activities on the environment. Moreover, radioactive isotopes are instrumental in studying climate change. For instance, isotopes of oxygen and hydrogen found in ice cores provide valuable data about past temperatures and atmospheric conditions, aiding climate models and predictions.Despite their many benefits, the use of radioactive isotopes also raises safety concerns. The radiation emitted can pose health risks if not handled properly. Therefore, strict regulations govern the use and disposal of radioactive isotopes to minimize exposure to humans and the environment. Researchers and medical professionals must undergo extensive training to ensure they understand the risks and adhere to safety protocols when working with these materials.In conclusion, radioactive isotopes are essential components in various scientific disciplines. Their unique properties allow for groundbreaking advancements in medicine, archaeology, and environmental science. As we continue to explore the potential of radioactive isotopes, it is vital to balance their benefits with the necessary precautions to ensure safety and sustainability. Understanding the significance of radioactive isotopes empowers us to harness their power responsibly, paving the way for future innovations that can positively impact society and our understanding of the world around us.

放射性同位素的研究在医学、考古学和环境科学等多个领域中发挥着至关重要的作用。放射性同位素是一种不稳定的元素形式,在衰变成更稳定的形式时会释放辐射。这种衰变过程可以被利用于许多应用,使得放射性同位素成为研究和实际场景中不可或缺的工具。在医学中,放射性同位素通常用于诊断成像和治疗。例如,锝-99m是一种广泛使用的放射性同位素,用于核医学中的器官和组织成像。它允许医生实时可视化各种器官的功能,为诊断提供关键的信息。此外,碘-131等放射性同位素被用于治疗甲状腺癌。这些同位素发出的辐射选择性地针对癌细胞,最小化对周围健康组织的损害,从而改善患者的治疗效果。在考古学中,放射性同位素作为强有力的工具,用于对古代文物和化石进行年代测定。例如,碳-14测年法是一种测量有机材料中剩余的碳-14(一个放射性同位素)的方法。由于碳-14有一个已知的半衰期,科学家可以通过测量其剩余浓度来确定物体的年龄。这项技术彻底改变了我们对人类历史的理解,使考古学家能够建立古代文明及其实践的时间线。环境科学也从使用放射性同位素中获得了显著的好处。研究人员利用同位素追踪污染物在生态系统中的运动。通过使用铯-137等同位素,科学家可以追踪土壤和水中污染物的分布,帮助评估工业活动对环境的影响。此外,放射性同位素在研究气候变化方面也发挥着重要作用。例如,冰芯中发现的氧和氢的同位素提供了关于过去温度和大气条件的宝贵数据,帮助气候模型和预测。尽管有许多好处,使用放射性同位素也引发了安全问题。释放的辐射如果处理不当可能会对健康造成风险。因此,对放射性同位素的使用和处置有严格的规定,以最小化对人类和环境的暴露。研究人员和医疗专业人员必须接受广泛的培训,以确保他们理解风险并遵循安全协议。总之,放射性同位素是各科学科中的重要组成部分。它们独特的属性使得医学、考古学和环境科学的重大进展成为可能。随着我们继续探索放射性同位素的潜力,平衡其益处与必要的预防措施以确保安全和可持续性至关重要。理解放射性同位素的重要性使我们能够负责任地利用它们的力量,为未来的创新铺平道路,这些创新能够对社会产生积极影响,并加深我们对周围世界的理解。

相关单词

isotope

isotope详解:怎么读、什么意思、用法