radioactive decay

简明释义

放射性衰变

英英释义

Radioactive decay is the process by which an unstable atomic nucleus loses energy by emitting radiation, resulting in the transformation of the nucleus into a more stable form.

放射性衰变是一个不稳定的原子核通过发射辐射失去能量的过程,导致核转变为更稳定的形式。

例句

1.The rate of radioactive decay is measured in half-lives, which indicates the time it takes for half of a sample to decay.

放射性衰变的速率以半衰期来测量,表示样本衰变一半所需的时间。

2.In nuclear medicine, doctors often rely on the principles of radioactive decay to treat various diseases.

在核医学中,医生常常依赖放射性衰变的原理来治疗各种疾病。

3.During the process of radioactive decay, unstable isotopes release energy in the form of radiation.

放射性衰变的过程中,不稳定的同位素以辐射的形式释放能量。

4.Understanding radioactive decay is crucial for managing nuclear waste safely.

理解放射性衰变对于安全管理核废料至关重要。

5.Scientists use radioactive decay to date ancient artifacts through carbon dating.

科学家利用放射性衰变通过碳定年法来测定古代文物的年龄。

作文

Radioactive decay is a natural process by which unstable atomic nuclei lose energy by emitting radiation. This phenomenon is significant in various fields, including nuclear physics, medicine, and environmental science. Understanding radioactive decay (放射性衰变) is crucial for both scientific research and practical applications. The process of radioactive decay (放射性衰变) can occur in several forms, including alpha decay, beta decay, and gamma decay. In alpha decay, an atomic nucleus emits an alpha particle, which consists of two protons and two neutrons. This results in the transformation of the original element into a new element with a lower atomic number. Beta decay, on the other hand, involves the conversion of a neutron into a proton, or vice versa, leading to the emission of beta particles. Gamma decay occurs when an excited nucleus releases energy in the form of gamma rays without changing its atomic number or mass.One of the most well-known examples of radioactive decay (放射性衰变) is the decay of uranium-238 into lead-206. This process involves a series of intermediate steps, where uranium-238 undergoes multiple decays before finally stabilizing as lead-206. The half-life of uranium-238 is approximately 4.5 billion years, meaning it takes this long for half of a sample to decay. This slow rate of decay makes uranium-238 useful for dating geological formations and understanding the age of the Earth.In medicine, radioactive decay (放射性衰变) plays a vital role in diagnostic imaging and cancer treatment. Radioisotopes are often used in medical procedures to visualize internal organs and tissues. For instance, technetium-99m is widely used in nuclear medicine for imaging purposes due to its favorable properties and relatively short half-life. Additionally, certain isotopes can be utilized in targeted radiation therapy to destroy cancer cells while minimizing damage to surrounding healthy tissue.Environmental scientists also study radioactive decay (放射性衰变) to understand the impact of radioactive materials in the environment. Natural sources of radioactivity, such as radon gas, can pose health risks to humans. By monitoring and analyzing the decay of these materials, researchers can assess exposure levels and develop strategies to mitigate risks. Furthermore, the study of radioactive decay (放射性衰变) helps in understanding the processes that govern the behavior of radioactive waste, which is a critical concern for nuclear energy production.In conclusion, radioactive decay (放射性衰变) is a fundamental concept in science that has far-reaching implications. From its role in dating geological samples to its applications in medicine and environmental science, understanding this process is essential for advancements in technology and public health. As we continue to explore the mysteries of the atomic world, the significance of radioactive decay (放射性衰变) remains ever relevant, emphasizing the interconnectedness of various scientific disciplines.

放射性衰变是一个自然过程,不稳定的原子核通过发射辐射来失去能量。这一现象在多个领域中具有重要意义,包括核物理学、医学和环境科学。理解放射性衰变radioactive decay)对科学研究和实际应用至关重要。放射性衰变radioactive decay)可以以多种形式发生,包括阿尔法衰变、贝塔衰变和伽马衰变。在阿尔法衰变中,原子核发射一个阿尔法粒子,该粒子由两个质子和两个中子组成。这导致原始元素转变为具有较低原子序数的新元素。另一方面,贝塔衰变涉及将一个中子转化为一个质子,或反之,从而释放贝塔粒子。伽马衰变发生在激发态核释放能量的过程中,以伽马射线的形式,而不改变其原子序数或质量。放射性衰变radioactive decay)最著名的例子之一是铀-238衰变为铅-206。这个过程涉及一系列中间步骤,其中铀-238经过多次衰变后最终稳定为铅-206。铀-238的半衰期约为45亿年,这意味着样本中一半的铀-238衰变所需的时间。这个缓慢的衰变速率使得铀-238在地质形成的年代测定中非常有用,有助于了解地球的年龄。在医学领域,放射性衰变radioactive decay)在诊断成像和癌症治疗中发挥着重要作用。放射性同位素通常用于医学程序中,以可视化内部器官和组织。例如,锝-99m因其良好的特性和相对较短的半衰期而广泛用于核医学成像。此外,某些同位素可用于靶向放射治疗,以摧毁癌细胞,同时尽量减少对周围健康组织的损害。环境科学家也研究放射性衰变radioactive decay),以了解放射性材料对环境的影响。天然放射性源,如氡气,可能对人类构成健康风险。通过监测和分析这些材料的衰变,研究人员可以评估暴露水平并制定减轻风险的策略。此外,研究放射性衰变radioactive decay)还有助于理解放射性废物的行为过程,这对核能生产而言是一个关键问题。总之,放射性衰变radioactive decay)是科学中的一个基本概念,具有深远的影响。从其在地质样本年代测定中的作用到其在医学和环境科学中的应用,理解这一过程对技术进步和公共健康至关重要。随着我们继续探索原子世界的奥秘,放射性衰变radioactive decay)的重要性依然显著,强调了各科学学科之间的相互联系。

相关单词

decay

decay详解:怎么读、什么意思、用法