physical half life
简明释义
物理半衰期
英英释义
The physical half-life is the time required for half of the atoms in a radioactive substance to decay, resulting in a reduction of its radioactivity. | 物理半衰期是指放射性物质中一半原子衰变所需的时间,导致其放射性减少。 |
例句
1.The physical half life of iodine-131 is approximately 8 days, which is why it's used in thyroid treatments.
碘-131的物理半衰期大约为8天,这就是它被用于甲状腺治疗的原因。
2.In medical applications, knowing the physical half life of a drug can influence treatment schedules.
在医学应用中,了解药物的物理半衰期可以影响治疗计划。
3.Researchers must consider the physical half life of isotopes when designing experiments in nuclear physics.
研究人员在设计核物理实验时必须考虑同位素的物理半衰期。
4.Understanding the physical half life of a radioactive isotope helps in managing nuclear waste effectively.
理解放射性同位素的物理半衰期有助于有效管理核废料。
5.The physical half life of carbon-14 is about 5,730 years, making it useful for dating ancient organic materials.
碳-14的物理半衰期大约为5730年,这使它在古代有机材料的测定中非常有用。
作文
The concept of physical half life is crucial in understanding the behavior of radioactive materials and their applications in various fields, including medicine, archaeology, and nuclear energy. The term refers to the time required for half of the radioactive atoms in a sample to decay. This decay process is random for individual atoms, but when considering a large number of atoms, it results in a predictable rate of decay over time. The physical half life of a substance is a fundamental property that helps scientists and researchers assess how long a radioactive material will remain hazardous or useful.In medicine, the physical half life is particularly significant in the field of nuclear medicine, where radioactive isotopes are used for diagnosis and treatment. For instance, technetium-99m is a commonly used isotope in medical imaging due to its favorable physical half life of about six hours. This allows for effective imaging procedures without exposing patients to excessive radiation. Understanding the physical half life of such isotopes enables healthcare professionals to plan appropriate dosages and timing for treatments, ensuring patient safety and diagnostic efficacy.In archaeology, the physical half life is utilized in radiocarbon dating, a technique that determines the age of ancient organic materials. Carbon-14, a radioactive isotope of carbon, has a physical half life of approximately 5,730 years. By measuring the remaining amount of carbon-14 in a sample, archaeologists can estimate when the organism died, providing valuable insights into historical timelines and human activities. This application highlights the importance of the physical half life in unraveling the mysteries of our past.Moreover, in the field of nuclear energy, understanding the physical half life of various isotopes is essential for managing nuclear waste and ensuring safety. Different isotopes have different physical half lives, which affects how long they remain radioactive and the strategies needed for their disposal. For example, plutonium-239 has a physical half life of 24,100 years, necessitating long-term storage solutions to prevent environmental contamination. Knowledge of the physical half life assists policymakers in making informed decisions regarding nuclear energy production and waste management.In summary, the concept of physical half life is vital across numerous disciplines. Its implications stretch from enhancing medical practices to aiding archaeological discoveries and ensuring nuclear safety. By comprehending the physical half life of various radioactive materials, we can better navigate their uses and risks, ultimately contributing to advancements in science and technology. As we continue to explore the properties of matter at the atomic level, the physical half life remains a key factor in our understanding of the natural world and its processes.
“物理半衰期”这一概念对于理解放射性材料的行为及其在医学、考古学和核能等多个领域的应用至关重要。该术语指的是样本中一半放射性原子衰变所需的时间。这个衰变过程对于单个原子来说是随机的,但当考虑大量原子时,它会导致随时间推移而产生可预测的衰变速率。“物理半衰期”是物质的基本属性,帮助科学家和研究人员评估放射性材料保持危害或有用的时间长短。在医学中,“物理半衰期”在核医学领域尤其重要,放射性同位素被用于诊断和治疗。例如,钼-99是医学成像中常用的一种同位素,由于其约六小时的“物理半衰期”,使得有效的成像程序得以实现,而不会让患者暴露于过量的辐射之中。了解这种同位素的“物理半衰期”使医疗专业人员能够规划适当的剂量和治疗时间,确保患者安全和诊断效果。在考古学中,“物理半衰期”被用于放射性碳定年,这是一种确定古代有机材料年龄的技术。碳-14是一种放射性同位素,其“物理半衰期”约为5730年。通过测量样本中剩余的碳-14量,考古学家可以估算生物体死亡的时间,从而提供对历史时间线和人类活动的宝贵见解。这一应用突显了“物理半衰期”在揭示我们过去的神秘事物中的重要性。此外,在核能领域,了解各种同位素的“物理半衰期”对于管理核废料和确保安全至关重要。不同同位素具有不同的“物理半衰期”,这影响它们保持放射性的时间以及处理所需的策略。例如,铀-239的“物理半衰期”为24100年,因此需要长期存储解决方案以防止环境污染。对“物理半衰期”的认识帮助政策制定者在核能生产和废物管理方面做出明智的决策。总之,“物理半衰期”这一概念在多个学科中至关重要。其影响从增强医学实践到帮助考古发现,再到确保核安全。通过理解各种放射性材料的“物理半衰期”,我们可以更好地应对它们的使用与风险,最终推动科学和技术的进步。随着我们继续探索物质在原子层面的特性,“物理半衰期”仍然是我们理解自然世界及其过程的关键因素。
相关单词