equilateral

简明释义

[ˌiːkwɪˈlætərəl][ˈikwəˈlætərəl]

adj. 等边的;等面的

n. 等边形

英英释义

Having all sides of equal length, typically used to describe a triangle with three equal sides.

所有边长度相等的,通常用于描述三条边长度相等的三角形。

单词用法

equilateral triangle

等边三角形

同义词

equidistant

等距的

An equilateral triangle has all sides of equal length.

一个等边三角形的所有边长相等。

equal-sided

等边的

In an equidistant arrangement, each point is the same distance from a central point.

在等距排列中,每个点与中心点的距离相同。

反义词

scalene

不等边三角形

A scalene triangle has all sides of different lengths.

不等边三角形的三条边长度各不相同。

isosceles

等腰三角形

An isosceles triangle has at least two sides that are of equal length.

等腰三角形至少有两条边长度相等。

例句

1.A tetrahedron with four equilateral triangular faces.

有四个等边三角形面的四面体。

2.The angles are equal, for ABC is equilateral.

三角相等,因为三角形abc是等边三角形。

3.Polygon SUVNPQ is equilateral and equiangular and TWOR is a rectangle.

图形为一个长方形内含一个六边形。

4.Its outline roughly forms an equilateral triangle.

它的大致轮廓是一个等边三角形。

5.Use your protractor to construct an equilateral triangle.

用量角器作一个等边三角形。

6.An equilateral triangle has all sides equal and all angles equal. A right triangle has one Angle equal to 90 degrees.

等边三角形三边相等三内角相等。直角三角形有一个角等于90度。

7.For example, the triangle values 2, 2, 2 and 3, 3, 3 are both equilateral.

例如,三角形的三条边分别是2,2,2和3,3,3,它们都是等边三角形。

8.And then the complex area coverage problem is transformed into simple equilateral triangle coverage problem.

从而将复杂的区域覆盖问题转化为简单的正三角形区域覆盖问题。

9.Diagram 3 consists of several equilateral triangles of equal size.

图3是由同样大小的等边三角形所组成的。

10.The equilateral triangle is often used in architecture for its aesthetic appeal.

由于其美学吸引力,等边三角形常用于建筑设计中。

11.To construct an equilateral triangle, you can use a compass and straightedge.

要构造一个等边三角形,可以使用圆规和直尺。

12.The artist used an equilateral design for the logo.

艺术家为这个标志采用了等边设计。

13.In geometry, an equilateral polygon is a shape with all sides the same length.

在几何学中,等边多边形是指所有边长相同的形状。

14.An equilateral triangle has all sides of equal length.

一个等边三角形的所有边长相等。

作文

In the world of geometry, shapes and figures play a crucial role in our understanding of space and structure. Among these shapes, the term equilateral refers to a specific type of triangle that possesses unique properties. An equilateral triangle is defined as a triangle in which all three sides are of equal length, and consequently, all three internal angles are also equal, each measuring 60 degrees. This symmetry makes the equilateral triangle not only aesthetically pleasing but also significant in various mathematical applications.The concept of equilateral triangles extends beyond mere definitions; it serves as a foundation for more complex geometric principles. For instance, the Pythagorean theorem, which relates the lengths of the sides of right triangles, can also be explored through the lens of equilateral triangles when they are divided into two right triangles. This division highlights the relationship between the sides and the height of the triangle, illustrating how geometric properties interconnect.Furthermore, equilateral triangles are prevalent in real-world applications, particularly in architecture and engineering. The strength and stability of structures often rely on triangular shapes, and the equilateral triangle is considered one of the strongest forms due to its balanced distribution of weight. For example, many truss designs in bridges utilize equilateral triangles to ensure durability and safety. The uniformity of the equilateral triangle allows for efficient load distribution, making it an ideal choice in construction.In art and design, the equilateral triangle also finds its place. Artists and designers often use this shape to create visually harmonious compositions. The balance and symmetry inherent in equilateral triangles can evoke feelings of stability and tranquility, making them a popular choice in various artistic endeavors. Whether in logo design, architecture, or abstract art, the equilateral triangle serves as a powerful tool for conveying messages and emotions.Moreover, the study of equilateral triangles can lead to a deeper appreciation of mathematical beauty. The relationships between the sides and angles can be explored through various mathematical theories, including trigonometry. The sine, cosine, and tangent functions can be applied to equilateral triangles, allowing for the calculation of unknown lengths and angles, thereby enriching our understanding of geometry.In conclusion, the term equilateral encompasses more than just a geometric definition; it represents a fundamental concept that permeates various fields such as mathematics, engineering, art, and design. Understanding equilateral triangles enhances our comprehension of the world around us, revealing the intricate connections between shapes and their applications. As we continue to explore the realms of geometry, the equilateral triangle will undoubtedly remain a vital element, inspiring innovation and creativity across disciplines.

在几何学的世界中,形状和图形在我们理解空间和结构方面发挥着至关重要的作用。在这些形状中,术语equilateral指的是一种具有独特属性的特定类型的三角形。equilateral三角形被定义为一个三角形,其中所有三条边的长度相等,因此,所有三个内角也相等,每个角度为60度。这种对称性使得equilateral三角形不仅在美学上令人愉悦,而且在各种数学应用中也具有重要意义。equilateral三角形的概念超越了简单的定义;它作为更复杂几何原理的基础。例如,毕达哥拉斯定理,它与直角三角形的边长有关,也可以通过将equilateral三角形分割成两个直角三角形来探索。这种分割突显了边和三角形高度之间的关系,说明了几何性质是如何相互连接的。此外,equilateral三角形在现实世界的应用中也很常见,特别是在建筑和工程中。结构的强度和稳定性往往依赖于三角形的形状,而equilateral三角形被认为是最强的形状之一,因为它能够均衡地分配重量。例如,许多桥梁中的桁架设计利用equilateral三角形,以确保耐用性和安全性。equilateral三角形的均匀性允许有效的载荷分配,使其成为建筑中的理想选择。在艺术和设计中,equilateral三角形也找到了自己的位置。艺术家和设计师常常使用这种形状来创造视觉和谐的构图。equilateral三角形固有的平衡和对称性可以引发稳定和宁静的感觉,使其在各种艺术创作中成为流行的选择。无论是在标志设计、建筑还是抽象艺术中,equilateral三角形都是传达信息和情感的强大工具。此外,研究equilateral三角形可以加深我们对数学美的欣赏。边和角之间的关系可以通过各种数学理论进行探索,包括三角学。正弦、余弦和正切函数可以应用于equilateral三角形,从而允许计算未知的长度和角度,丰富我们对几何的理解。总之,术语equilateral包含的不仅仅是几何定义;它代表了一个基本概念,渗透到数学、工程、艺术和设计等多个领域。理解equilateral三角形增强了我们对周围世界的认识,揭示了形状及其应用之间错综复杂的联系。随着我们继续探索几何的领域,equilateral三角形无疑将继续作为一个重要元素,激励跨学科的创新和创造力。