oxide fuel element

简明释义

氧化物燃料元件

英英释义

An oxide fuel element is a component used in nuclear reactors, consisting of a solid fuel made from metal oxides, which serves as the source of nuclear fission reactions.

氧化物燃料元件是用于核反应堆的一个组件,由金属氧化物制成的固体燃料组成,作为核裂变反应的来源。

例句

1.During the testing phase, the oxide fuel element showed excellent thermal stability.

在测试阶段,氧化物燃料元件表现出优异的热稳定性。

2.The reactor uses an oxide fuel element to achieve efficient energy production.

该反应堆使用氧化物燃料元件以实现高效的能量生产。

3.The oxide fuel element is crucial for maintaining the safety of the nuclear reactor.

对于维持核反应堆的安全性,氧化物燃料元件至关重要。

4.In the simulation, the oxide fuel element demonstrated a high resistance to radiation damage.

在模拟中,氧化物燃料元件表现出对辐射损伤的高度抵抗力。

5.Engineers are developing new designs for the oxide fuel element to improve performance.

工程师们正在开发新的氧化物燃料元件设计以提高性能。

作文

In the field of nuclear engineering, the term oxide fuel element refers to a crucial component used in many types of nuclear reactors. These elements are primarily composed of uranium dioxide (UO2) or plutonium dioxide (PuO2), which are ceramic materials that can withstand high temperatures and are efficient at sustaining nuclear fission reactions. The design and functionality of oxide fuel elements play a significant role in the overall efficiency and safety of nuclear power generation.The use of oxide fuel elements is particularly notable in light water reactors (LWRs), which are the most common type of nuclear reactors worldwide. In these reactors, the oxide fuel elements are assembled into fuel rods, which are then bundled to form a fuel assembly. This configuration allows for a large surface area for heat transfer, enabling the reactor coolant to effectively remove heat generated during the fission process. The ability to maintain optimal temperature and pressure conditions is essential for the safe operation of a nuclear reactor.One of the key advantages of oxide fuel elements is their stability under reactor operating conditions. The ceramic structure of uranium dioxide, for instance, ensures that it remains intact even at high temperatures, reducing the risk of fuel failure. Additionally, the chemical properties of oxide fuel elements allow them to retain fission products, minimizing the release of radioactive materials into the environment. This containment is vital for ensuring the safety of both reactor personnel and the surrounding communities.However, the production and use of oxide fuel elements also come with challenges. The fabrication of these fuel elements requires sophisticated technology and strict quality control measures to ensure their integrity and performance. Any defects in the fuel can lead to significant safety risks, including the potential for overheating and release of radiation. Therefore, ongoing research and development efforts focus on improving the manufacturing processes and materials used in oxide fuel elements.Moreover, as the world seeks to transition to more sustainable energy sources, the role of oxide fuel elements in nuclear power generation is being reevaluated. While they provide a substantial amount of energy with low greenhouse gas emissions, concerns about nuclear waste management and the long-term sustainability of uranium mining remain pressing issues. Innovations such as advanced reactors and alternative fuels are being explored to address these challenges while maintaining the benefits offered by oxide fuel elements.In conclusion, the oxide fuel element is a vital component in the nuclear energy sector, enabling efficient and safe energy production. Its unique properties contribute to the reliability of nuclear reactors, though challenges in production and waste management persist. As technology advances, the future of oxide fuel elements may evolve, potentially leading to new methodologies that enhance the sustainability and safety of nuclear energy. Understanding the significance of oxide fuel elements is essential for anyone interested in the future of energy production and environmental stewardship.

在核工程领域,术语氧化物燃料元件指的是用于多种类型核反应堆的重要组成部分。这些元件主要由二氧化铀(UO2)或二氧化钚(PuO2)构成,这些陶瓷材料能够承受高温,并且在维持核裂变反应方面效率高。氧化物燃料元件的设计和功能在核能发电的整体效率和安全性中发挥着重要作用。氧化物燃料元件在轻水反应堆(LWR)中的使用尤其显著,轻水反应堆是全球最常见的核反应堆类型。在这些反应堆中,氧化物燃料元件被组装成燃料棒,然后捆绑形成燃料组件。这种配置允许更大的热传递表面积,使反应堆冷却剂能够有效地去除在裂变过程中产生的热量。维持最佳的温度和压力条件对于核反应堆的安全运行至关重要。氧化物燃料元件的一个关键优势是它们在反应堆操作条件下的稳定性。例如,二氧化铀的陶瓷结构确保即使在高温下也能保持完整,降低了燃料失效的风险。此外,氧化物燃料元件的化学特性使其能够保持裂变产物,从而最大限度地减少放射性物质释放到环境中的可能性。这种封闭性对于确保反应堆人员和周边社区的安全至关重要。然而,氧化物燃料元件的生产和使用也面临挑战。这些燃料元件的制造需要先进的技术和严格的质量控制措施,以确保其完整性和性能。燃料中的任何缺陷都可能导致重大安全风险,包括过热和辐射释放的潜在风险。因此,持续的研究和开发工作专注于改善氧化物燃料元件的制造工艺和材料。此外,随着世界寻求向更可持续的能源来源转型,氧化物燃料元件在核能发电中的角色也正在重新评估。虽然它们以低温室气体排放提供大量能源,但对核废物管理和铀开采长期可持续性的担忧仍然是紧迫的问题。正在探索诸如先进反应堆和替代燃料等创新,以解决这些挑战,同时保持氧化物燃料元件所提供的好处。总之,氧化物燃料元件是核能行业的重要组成部分,使高效和安全的能源生产成为可能。其独特的属性有助于核反应堆的可靠性,尽管在生产和废物管理方面仍然存在挑战。随着技术的进步,氧化物燃料元件的未来可能会演变,可能导致新的方法论,增强核能的可持续性和安全性。了解氧化物燃料元件的重要性对于任何对未来能源生产和环境管理感兴趣的人来说都是至关重要的。

相关单词

oxide

oxide详解:怎么读、什么意思、用法

fuel

fuel详解:怎么读、什么意思、用法