orthogonal system

简明释义

正交系

英英释义

An orthogonal system is a set of vectors in a vector space that are mutually perpendicular to each other, meaning the dot product of any two distinct vectors in the set is zero.

正交系统是一个向量空间中的一组向量,它们彼此垂直,意味着该集合中任何两个不同向量的点积为零。

In the context of functions, an orthogonal system refers to a collection of functions that are orthogonal with respect to an inner product defined on a function space.

在函数的上下文中,正交系统指的是一组相对于定义在函数空间上的内积而言正交的函数。

例句

1.In computer science, an orthogonal system 正交系统 allows for independent module development.

在计算机科学中,正交系统 orthogonal system 允许独立模块开发。

2.In mathematics, the concept of an orthogonal system 正交系统 is crucial for understanding vector spaces.

在数学中,正交系统 orthogonal system 的概念对于理解向量空间至关重要。

3.The design of the software follows an orthogonal system 正交系统 approach to minimize dependencies.

软件设计遵循 正交系统 orthogonal system 方法,以最小化依赖关系。

4.Using an orthogonal system 正交系统 in signal processing can improve the clarity of the signals.

在信号处理中使用 正交系统 orthogonal system 可以提高信号的清晰度。

5.An orthogonal system 正交系统 of functions can simplify the process of solving differential equations.

一个 正交系统 orthogonal system 的函数可以简化求解微分方程的过程。

作文

In the realm of mathematics and computer science, the concept of an orthogonal system plays a crucial role in various applications. To understand this term better, we need to delve into its meaning and implications. An orthogonal system refers to a set of vectors that are mutually perpendicular, which implies that the inner product of any two different vectors within this set equals zero. This property is particularly significant in linear algebra, where it simplifies calculations and enhances the understanding of vector spaces.The importance of orthogonal systems extends beyond theoretical mathematics; it finds practical applications in fields such as signal processing, machine learning, and data analysis. For instance, in signal processing, the use of orthogonal systems allows engineers to separate signals from noise, leading to clearer audio and visual outputs. The Fourier Transform, which decomposes signals into their constituent frequencies, utilizes orthogonal systems to achieve this separation effectively.Moreover, in machine learning, orthogonal systems can improve the efficiency of algorithms. When data points are represented in an orthogonal system, it becomes easier to perform operations such as clustering or classification, as the distance between points can be calculated more straightforwardly. This leads to faster computations and more accurate models, which are essential in today's data-driven world.In addition to these applications, the concept of orthogonal systems also has philosophical implications. It encourages a way of thinking that values independence and separation. In many real-world scenarios, having independent components can lead to more robust solutions. For example, in software engineering, designing systems with orthogonal components allows for greater modularity and easier maintenance, as changes in one module do not necessarily affect others.Furthermore, the idea of orthogonality can be applied to problem-solving approaches. When tackling complex issues, considering different perspectives or methods that do not interfere with each other can lead to more innovative solutions. This approach mirrors the mathematical principle of orthogonal systems, where distinct vectors contribute uniquely to the overall space without redundancy.In conclusion, the concept of an orthogonal system is not only a fundamental aspect of mathematics but also a valuable principle that can be applied across various disciplines. Its ability to simplify complex problems, enhance clarity, and promote independence makes it an essential tool in both theoretical and practical contexts. By embracing the idea of orthogonal systems, we can foster innovation and efficiency in our work, paving the way for advancements in technology and understanding in numerous fields.

在数学和计算机科学的领域中,正交系统的概念在各种应用中发挥着至关重要的作用。要更好地理解这个术语,我们需要深入探讨其含义和影响。正交系统指的是一组相互垂直的向量,这意味着该集合中任何两个不同向量的内积等于零。这一特性在线性代数中尤为重要,因为它简化了计算并增强了对向量空间的理解。正交系统的重要性超越了理论数学,它在信号处理、机器学习和数据分析等领域找到了实际应用。例如,在信号处理中,使用正交系统可以使工程师将信号与噪声分离,从而获得更清晰的音频和视觉输出。傅里叶变换(Fourier Transform)利用正交系统有效地将信号分解为其组成频率。此外,在机器学习中,正交系统可以提高算法的效率。当数据点以正交系统表示时,计算点之间的距离变得更加简单,这使得聚类或分类等操作更加容易。这导致了更快的计算速度和更准确的模型,而这些在当今数据驱动的世界中至关重要。除了这些应用之外,正交系统的概念还有哲学上的意义。它鼓励一种重视独立性和分离的思维方式。在许多现实场景中,拥有独立组件可以导致更强大的解决方案。例如,在软件工程中,设计具有正交组件的系统允许更大的模块化和更容易的维护,因为对一个模块的更改不一定会影响其他模块。此外,正交性的思想也可以应用于问题解决的方法。在应对复杂问题时,考虑不同的视角或方法,而这些视角或方法彼此不干扰,可以导致更具创新性的解决方案。这种方法反映了正交系统的数学原理,其中不同的向量独特地贡献于整体空间,而没有冗余。总之,正交系统的概念不仅是数学的基本方面,也是可以应用于各个学科的宝贵原则。它简化复杂问题、增强清晰度以及促进独立性的能力,使其成为理论和实践背景下的重要工具。通过接受正交系统的理念,我们可以促进工作中的创新和效率,为技术进步和多个领域的理解铺平道路。

相关单词

orthogonal

orthogonal详解:怎么读、什么意思、用法