synaptosome
简明释义
英[sɪˈnæptəsəʊm]美[sɪˈnæptəˌsoʊm]
n. 突触体
英英释义
单词用法
突触体制备 | |
突触体分析 | |
突触体的分离 | |
突触体功能 |
同义词
反义词
神经递质 | Neurotransmitters are released from synaptosomes during synaptic transmission. | 神经递质在突触小体中释放,参与突触传递。 | |
神经元 | Each neuron communicates with others through neurotransmitters. | 每个神经元通过神经递质与其他神经元进行交流。 |
例句
1.And the N-methyl-D-aspartate (NMDA) receptor on the synaptosome in hippocampus is one of the biological bases of LTP.
产生LTP的生物学基础之一是海马神经元突触上的N -甲基- D -天门冬氨酸(NMDA)受体。
2.And the N-methyl-D-aspartate (NMDA) receptor on the synaptosome in hippocampus is one of the biological bases of LTP.
产生LTP的生物学基础之一是海马神经元突触上的N -甲基- D -天门冬氨酸(NMDA)受体。
3.Researchers isolated the synaptosome to study neurotransmitter release mechanisms.
研究人员分离了突触体以研究神经递质释放机制。
4.In the lab, scientists examined the protein composition of the synaptosome.
在实验室中,科学家们检查了突触体的蛋白质成分。
5.The synaptosome preparation was crucial for understanding synaptic plasticity.
该突触体制备对于理解突触可塑性至关重要。
6.Using electron microscopy, they visualized the structure of the synaptosome.
通过电子显微镜,他们观察到了突触体的结构。
7.The synaptosome serves as a model for studying neuronal communication.
突触体作为研究神经元通信的模型。
作文
The study of the brain and its intricate functions has fascinated scientists for decades. Among the many components that play a crucial role in neuronal communication, the term synaptosome refers to a specialized structure found in nerve endings. These structures are essential for understanding how neurons communicate with each other through chemical signals. A synaptosome can be defined as a presynaptic compartment that contains neurotransmitters, proteins, and other molecules necessary for synaptic transmission. This definition highlights the importance of synaptosome in the process of synaptic signaling, which is vital for various brain functions such as learning, memory, and mood regulation.Understanding the role of synaptosome begins with recognizing its function in the synaptic cleft—the tiny gap between two neurons where communication occurs. When an action potential travels down a neuron, it triggers the release of neurotransmitters stored within the synaptosome. These neurotransmitters then cross the synaptic cleft and bind to receptors on the postsynaptic neuron, leading to either excitatory or inhibitory responses. The efficiency of this process is critical for maintaining proper neuronal communication and ensuring that signals are transmitted accurately across the nervous system.Moreover, the study of synaptosome has significant implications for understanding various neurological disorders. For instance, conditions such as Alzheimer’s disease, schizophrenia, and depression have been linked to dysfunctions in synaptic transmission. Researchers are increasingly investigating how alterations in synaptosome function may contribute to these diseases. By studying the molecular composition and dynamics of synaptosome, scientists hope to uncover potential therapeutic targets that could restore normal synaptic function and alleviate symptoms associated with these disorders.In addition to their role in health, synaptosome also provides insights into the effects of drugs on the brain. Many psychoactive substances influence neurotransmitter release and receptor binding, ultimately affecting synaptosome activity. For example, stimulants like cocaine increase dopamine levels by inhibiting its reuptake, leading to enhanced signaling at the synapse. Understanding how these substances interact with synaptosome can help researchers develop better treatments for addiction and other mental health issues.Furthermore, advancements in technology have allowed scientists to isolate and study synaptosome more effectively. Techniques such as electron microscopy and biochemical assays enable researchers to visualize synaptosome structures and analyze their molecular components. This level of detail is crucial for unraveling the complexities of synaptic transmission and understanding how various factors influence neuronal communication.In conclusion, the synaptosome is a fundamental component of the nervous system that plays a vital role in synaptic transmission. Its importance extends beyond basic neuroscience; it holds the key to understanding various neurological disorders and the effects of drugs on brain function. As research continues to evolve, the knowledge gained from studying synaptosome will undoubtedly lead to new insights and potential therapies that could improve the lives of individuals affected by neurological conditions. Thus, the exploration of synaptosome not only enriches our understanding of the brain but also paves the way for future innovations in neuroscience and medicine.
大脑及其复杂功能的研究吸引了科学家数十年。众多在神经元通信中发挥关键作用的成分中,术语突触体指的是在神经末梢发现的一种特殊结构。这些结构对于理解神经元如何通过化学信号相互通信至关重要。突触体可以定义为一个包含神经递质、蛋白质和其他必要分子的突触前室。这一定义强调了突触体在突触传递过程中的重要性,这对于学习、记忆和情绪调节等各种大脑功能至关重要。理解突触体的作用始于认识它在突触间隙中的功能——两个神经元之间的微小间隙,在这里发生通信。当动作电位沿着神经元传播时,它会触发储存在突触体中的神经递质的释放。这些神经递质随后穿越突触间隙,与突触后神经元上的受体结合,导致兴奋或抑制反应的发生。这个过程的效率对于维持正常的神经元通信并确保信号在神经系统中准确传递至关重要。此外,研究突触体对理解各种神经系统疾病具有重要意义。例如,阿尔茨海默病、精神分裂症和抑郁症等疾病与突触传递功能障碍有关。研究人员越来越多地调查突触体功能的变化如何可能导致这些疾病。通过研究突触体的分子组成和动态,科学家希望发现潜在的治疗靶点,从而恢复正常的突触功能,缓解与这些疾病相关的症状。除了在健康中的作用外,突触体还提供了对药物对大脑影响的深入见解。许多精神活性物质影响神经递质的释放和受体结合,最终影响突触体的活动。例如,像可卡因这样的兴奋剂通过抑制多巴胺的再摄取来提高其水平,从而增强突触处的信号传递。了解这些物质如何与突触体相互作用,可以帮助研究人员开发更好的成瘾和其他心理健康问题的治疗方法。此外,技术的进步使科学家能够更有效地分离和研究突触体。电子显微镜和生化分析等技术使研究人员能够可视化突触体结构并分析其分子成分。这种细致的程度对于揭示突触传递的复杂性以及理解各种因素如何影响神经元通信至关重要。总之,突触体是神经系统的基本组成部分,在突触传递中扮演着重要角色。它的重要性超越了基础神经科学;它是理解各种神经系统疾病和药物对大脑功能影响的关键。随着研究的不断发展,研究突触体所获得的知识无疑将带来新的见解和潜在的疗法,这可能改善受神经系统疾病影响的个体的生活。因此,探索突触体不仅丰富了我们对大脑的理解,还为未来在神经科学和医学领域的创新铺平了道路。