nuclear fusion

简明释义

核聚变

英英释义

Nuclear fusion is the process by which two or more atomic nuclei combine to form a heavier nucleus, releasing a significant amount of energy in the process.

核聚变是两个或多个原子核结合形成一个更重的原子核的过程,同时释放出大量的能量。

例句

1.Understanding the process of nuclear fusion 核聚变 can help us harness its power.

理解<期望的过程>核聚变<期望的中文释义>可以帮助我们利用其能量。

2.The ITER project aims to demonstrate the feasibility of nuclear fusion 核聚变 on a commercial scale.

国际热核聚变实验堆(ITER)项目旨在证明<期望的可行性>核聚变<期望的中文释义>在商业规模上的可行性。

3.The latest advancements in nuclear fusion 核聚变 technology could revolutionize power generation.

最新的<期望的进展>核聚变<期望的中文释义>技术可能会彻底改变电力生产。

4.Scientists are researching the potential of nuclear fusion 核聚变 as a clean energy source.

科学家正在研究<期望的潜力>核聚变<期望的中文释义>作为一种清洁能源来源。

5.Many researchers believe that achieving nuclear fusion 核聚变 is key to sustainable energy.

许多研究人员认为,实现<期望的目标>核聚变<期望的中文释义>是可持续能源的关键。

作文

Nuclear fusion is a process in which two light atomic nuclei combine to form a heavier nucleus, releasing a tremendous amount of energy in the process. This reaction is the same one that powers the sun and other stars, making it a fundamental aspect of astrophysics. The potential for harnessing nuclear fusion (核聚变) as a source of energy on Earth has been a subject of intense research and interest for decades. Unlike nuclear fission, which splits heavy atomic nuclei and produces radioactive waste, nuclear fusion (核聚变) offers a cleaner and virtually limitless energy source, with minimal environmental impact. The basic principle of nuclear fusion (核聚变) involves heating hydrogen isotopes, such as deuterium and tritium, to extremely high temperatures, causing them to collide with enough energy to overcome their electrostatic repulsion. When these isotopes fuse, they create helium and release energy in the form of light and heat. This reaction can be represented by the equation: 2H → He + Energy. The energy produced during nuclear fusion (核聚变) is millions of times greater than that produced by chemical reactions, making it an attractive alternative for meeting the world’s growing energy demands.One of the main challenges facing researchers is achieving the necessary conditions for nuclear fusion (核聚变) to occur. The temperatures required for fusion are on the order of millions of degrees Celsius, which presents significant engineering and material challenges. Scientists have developed various experimental reactors, such as tokamaks and inertial confinement devices, to create and sustain the extreme conditions needed for fusion. The International Thermonuclear Experimental Reactor (ITER) in France is one of the most ambitious projects aimed at demonstrating the feasibility of nuclear fusion (核聚变) as a practical energy source.In addition to the technical hurdles, there are also economic and political considerations surrounding nuclear fusion (核聚变). Funding for fusion research is often limited, and the timeline for achieving commercially viable fusion energy remains uncertain. However, the potential benefits are immense. If successful, nuclear fusion (核聚变) could provide a nearly inexhaustible supply of energy, significantly reducing our reliance on fossil fuels and helping to combat climate change. Moreover, the fuel for fusion—hydrogen—is abundant and widely available, further enhancing its appeal as a sustainable energy source.The future of nuclear fusion (核聚变) looks promising, with advancements in technology and increased international collaboration. As the world grapples with the urgent need for clean energy solutions, the quest for practical nuclear fusion (核聚变) becomes increasingly critical. Continued investment in research and development will be essential to overcoming the challenges and unlocking the potential of this powerful energy source. In conclusion, nuclear fusion (核聚变) represents a beacon of hope for a sustainable energy future, and its successful implementation could revolutionize the way we produce and consume energy on a global scale.

核聚变是一个过程,其中两个轻原子核结合形成一个较重的原子核,并在此过程中释放出巨大的能量。这种反应是太阳和其他恒星的动力来源,使其成为天体物理学的基本方面。几十年来,利用核聚变nuclear fusion)作为地球能源的潜力一直是研究和关注的主题。与核裂变不同,核裂变是分裂重原子核并产生放射性废物,而核聚变nuclear fusion)则提供了一种更清洁、几乎无限的能源来源,对环境影响极小。核聚变nuclear fusion)的基本原理涉及将氢同位素,如氘和氚,加热到极高的温度,使它们以足够的能量碰撞,克服它们的静电排斥。当这些同位素融合时,它们会生成氦并以光和热的形式释放能量。这种反应可以用以下方程表示:2H → He + Energy。在核聚变nuclear fusion)中产生的能量比化学反应产生的能量大数百万倍,使其成为满足世界日益增长的能源需求的有吸引力的替代方案。面临的主要挑战之一是实现核聚变nuclear fusion)发生所需的条件。进行聚变所需的温度在数百万摄氏度的数量级,这给工程和材料带来了重大挑战。科学家们开发了各种实验反应堆,如托卡马克和惯性约束装置,以创造和维持进行聚变所需的极端条件。位于法国的国际热核聚变实验反应堆(ITER)是旨在证明核聚变nuclear fusion)作为实用能源来源可行性的最雄心勃勃的项目之一。除了技术障碍外,围绕核聚变nuclear fusion)还有经济和政治方面的考虑。对聚变研究的资金往往有限,而实现商业可行的聚变能源的时间表仍不确定。然而,潜在的好处是巨大的。如果成功,核聚变nuclear fusion)可以提供几乎取之不尽的能源供应,显著减少我们对化石燃料的依赖,帮助应对气候变化。此外,聚变的燃料——氢——丰富且广泛可用,进一步增强了其作为可持续能源来源的吸引力。核聚变nuclear fusion)的未来看起来充满希望,技术的进步和国际合作的增加。随着全球急需清洁能源解决方案,追求实用的核聚变nuclear fusion)变得愈加重要。继续对研发的投资将是克服挑战并解锁这一强大能源来源潜力的关键。总之,核聚变nuclear fusion)代表了可持续能源未来的一线希望,其成功实施可能彻底改变我们在全球范围内生产和消费能源的方式。

相关单词

nuclear

nuclear详解:怎么读、什么意思、用法

fusion

fusion详解:怎么读、什么意思、用法