nuclear dipole moment

简明释义

核偶极矩

英英释义

The nuclear dipole moment is a vector quantity that represents the distribution of positive and negative charge within an atomic nucleus, indicating the strength and orientation of the nucleus's electric dipole.

核偶极矩是一个矢量量,表示原子核内正负电荷的分布,指示核的电偶极的强度和方向。

例句

1.The measurement of the nuclear dipole moment 核偶极矩 is crucial for understanding nuclear structure.

核偶极矩 核偶极矩的测量对于理解核结构至关重要。

2.The nuclear dipole moment 核偶极矩 plays a key role in magnetic resonance imaging.

在磁共振成像中,核偶极矩 核偶极矩起着关键作用。

3.Researchers found that the nuclear dipole moment 核偶极矩 of certain isotopes varies significantly.

研究人员发现某些同位素的核偶极矩 核偶极矩变化显著。

4.The nuclear dipole moment 核偶极矩 can provide insights into the interactions within the nucleus.

通过核偶极矩 核偶极矩可以深入了解核内相互作用。

5.Calculating the nuclear dipole moment 核偶极矩 helps physicists predict atomic behavior.

计算核偶极矩 核偶极矩有助于物理学家预测原子行为。

作文

The concept of nuclear dipole moment is fundamental in the field of nuclear physics and plays a crucial role in understanding the magnetic properties of atomic nuclei. In simple terms, the nuclear dipole moment refers to the measure of the distribution of positive and negative charges within a nucleus, which leads to a net magnetic moment. This property is significant because it helps scientists understand how nuclei interact with external magnetic fields, which is essential for various applications, including nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI).To grasp the idea of nuclear dipole moment, one must first understand the structure of an atomic nucleus. A nucleus is composed of protons and neutrons, collectively known as nucleons. Protons carry a positive charge, while neutrons are neutral. The arrangement of these nucleons within the nucleus can lead to an uneven distribution of charge, resulting in a dipole moment. The nuclear dipole moment can be thought of as a vector quantity that points from the center of positive charge to the center of negative charge within the nucleus.The significance of the nuclear dipole moment extends beyond theoretical physics; it has practical implications in various scientific fields. For instance, in NMR, the nuclear dipole moment of certain isotopes allows scientists to probe molecular structures and dynamics. When placed in a magnetic field, nuclei with a non-zero nuclear dipole moment will align with the field, and when exposed to radiofrequency radiation, they can absorb energy and transition to higher energy states. This interaction provides valuable information about the local environment of the nuclei, making NMR a powerful tool in chemistry and biochemistry.Moreover, the nuclear dipole moment is also essential in astrophysics. It helps in understanding the behavior of atomic nuclei in extreme environments, such as those found in stars or during supernovae. The study of nuclear dipole moment allows scientists to gain insights into the processes occurring in stellar explosions and the formation of heavy elements in the universe.In addition, the nuclear dipole moment is crucial for developing new technologies, such as quantum computing and advanced medical imaging techniques. Research continues to explore how manipulating the nuclear dipole moment of specific isotopes can enhance the sensitivity and resolution of imaging techniques, leading to better diagnostic tools in medicine.In conclusion, the nuclear dipole moment is a key concept in nuclear physics that describes the magnetic properties of atomic nuclei. Its understanding is vital for both theoretical research and practical applications across various scientific fields. As we continue to explore the intricacies of atomic structure and its interactions with magnetic fields, the nuclear dipole moment will undoubtedly remain a focal point of study, revealing more about the fundamental nature of matter and the universe itself.

“核偶极矩”的概念在核物理领域中是基础性的,并在理解原子核的磁性特性方面起着至关重要的作用。简单来说,核偶极矩是指核内正负电荷分布的测量,这导致了净磁矩的产生。这个特性非常重要,因为它帮助科学家理解核如何与外部磁场相互作用,这对包括核磁共振(NMR)和磁共振成像(MRI)在内的各种应用至关重要。要掌握核偶极矩的概念,首先必须了解原子核的结构。一个原子核由质子和中子组成,统称为核子。质子带有正电荷,而中子是中性的。这些核子在核内的排列可能导致电荷分布的不均匀,从而导致偶极矩的产生。核偶极矩可以被视为一个向量量,其方向从正电荷中心指向负电荷中心。核偶极矩的重要性不仅限于理论物理,它在各个科学领域都有实际的意义。例如,在NMR中,某些同位素的核偶极矩使科学家能够探测分子结构和动态。当置于磁场中时,具有非零核偶极矩的核将与磁场对齐,当暴露于射频辐射时,它们可以吸收能量并跃迁到更高的能级。这种相互作用提供了关于核局部环境的重要信息,使NMR成为化学和生物化学中的一种强大工具。此外,核偶极矩在天体物理学中也至关重要。它有助于理解在极端环境下原子核的行为,例如在恒星或超新星中。对核偶极矩的研究使科学家获得了关于恒星爆炸过程中发生的现象以及宇宙中重元素形成的见解。此外,核偶极矩对于开发新技术(如量子计算和先进医学成像技术)也至关重要。研究持续探索如何操纵特定同位素的核偶极矩可以增强成像技术的灵敏度和分辨率,从而在医学中提供更好的诊断工具。总之,核偶极矩是核物理中的一个关键概念,描述了原子核的磁性特性。对它的理解对于理论研究和各个科学领域的实际应用都是至关重要的。随着我们继续探索原子结构及其与磁场相互作用的复杂性,核偶极矩无疑将继续成为研究的焦点,揭示更多关于物质的基本性质和宇宙本身的信息。

相关单词

nuclear

nuclear详解:怎么读、什么意思、用法

dipole

dipole详解:怎么读、什么意思、用法