neutron neutron scattering
简明释义
中子 中子散射
英英释义
例句
1.In the field of condensed matter physics, neutron neutron scattering is a vital tool for understanding phase transitions.
在凝聚态物理学领域,中子中子散射是理解相变的重要工具。
2.The facility is equipped with advanced neutron neutron scattering technology for material characterization.
该设施配备有先进的中子中子散射技术用于材料表征。
3.Researchers used neutron neutron scattering to analyze the magnetic properties of new materials.
研究人员使用中子中子散射来分析新材料的磁性特性。
4.The technique of neutron neutron scattering allows scientists to study the atomic structure of proteins.
中子中子散射技术使科学家能够研究蛋白质的原子结构。
5.Using neutron neutron scattering, researchers discovered how hydrogen atoms behave in complex materials.
通过使用中子中子散射,研究人员发现氢原子在复杂材料中的行为。
作文
Neutron scattering is a powerful technique used in various fields of science, particularly in physics and materials science. It involves directing a beam of neutrons at a sample and analyzing the scattered neutrons to gain insights into the structure and dynamics of the material. One specific type of this technique is neutron neutron scattering, which refers to the interaction of neutrons with other neutrons within a sample. This process can provide valuable information about the arrangement and behavior of atoms in different states of matter. The significance of neutron neutron scattering lies in its ability to probe deep into the atomic structure without causing damage to the material being studied. Unlike X-rays, which can alter the state of certain materials, neutrons can penetrate deeply and interact with atomic nuclei, making them an ideal probe for studying complex systems. In practical applications, neutron neutron scattering is utilized in the study of various materials, including metals, polymers, and biological samples. For instance, researchers can use this technique to investigate the properties of superconductors or to analyze the molecular dynamics in proteins. The information obtained from these experiments can lead to advancements in technology, medicine, and fundamental scientific understanding. The experimental setup for neutron neutron scattering typically involves a neutron source, such as a nuclear reactor or a spallation source, where neutrons are produced and then directed towards a sample. As the neutrons interact with the sample, they scatter in different directions depending on the arrangement of atoms within the material. Detectors placed around the sample collect the scattered neutrons, and sophisticated analysis techniques are employed to interpret the data. This allows scientists to create detailed models of the atomic structure and understand how it influences the material's properties. Moreover, neutron neutron scattering has the unique capability to provide information about both static and dynamic properties of materials. Static properties refer to the arrangement of atoms in a material at a given moment, while dynamic properties involve the movement and interactions of those atoms over time. By examining how neutrons scatter at different angles and energies, researchers can gain insight into these properties, which is crucial for developing new materials and technologies. In conclusion, neutron neutron scattering is an invaluable tool in modern science that enhances our understanding of materials at the atomic level. Its non-destructive nature, combined with the depth of information it provides, makes it a preferred method for investigating a wide range of substances. As research continues to evolve, the applications of neutron neutron scattering are expected to expand further, leading to breakthroughs in various scientific disciplines. The ongoing development of neutron sources and detection technologies will only enhance the capabilities of this remarkable technique, allowing scientists to explore new frontiers in material science and beyond.
中子散射是一种在科学的各个领域,尤其是物理学和材料科学中使用的强大技术。它涉及将中子束指向样品,并分析散射的中子,以深入了解材料的结构和动态。其中一种具体类型的技术是中子中子散射,它指的是中子与样品中其他中子的相互作用。这个过程可以提供有关不同物质状态下原子排列和行为的宝贵信息。中子中子散射的重要性在于它能够深入探测原子结构,而不会对被研究的材料造成损害。与可能改变某些材料状态的X射线不同,中子能够深度穿透并与原子核相互作用,使其成为研究复杂系统的理想探针。在实际应用中,中子中子散射用于研究各种材料,包括金属、聚合物和生物样品。例如,研究人员可以使用此技术来研究超导体的性质或分析蛋白质中的分子动力学。从这些实验中获得的信息可以推动技术、医学和基础科学理解的进步。中子中子散射的实验设置通常涉及一个中子源,例如核反应堆或裂变源,在那里产生中子,然后将其指向样品。当中子与样品相互作用时,它们会根据材料内原子的排列以不同的方向散射。放置在样品周围的探测器收集散射的中子,采用复杂的分析技术来解释数据。这使科学家能够创建原子结构的详细模型,并了解它如何影响材料的性质。此外,中子中子散射具有独特的能力,可以提供有关材料的静态和动态性质的信息。静态性质是指材料在给定时刻的原子排列,而动态性质则涉及这些原子的运动和相互作用。通过检查中子在不同角度和能量下的散射情况,研究人员可以深入了解这些性质,这对于开发新材料和技术至关重要。总之,中子中子散射是现代科学中一项无价的工具,增强了我们对原子级材料的理解。其非破坏性特征以及提供的信息深度,使其成为研究广泛物质的首选方法。随着研究的不断发展,中子中子散射的应用预计将进一步扩展,从而在各个科学学科中带来突破。中子源和检测技术的持续发展将进一步增强这一卓越技术的能力,使科学家能够探索材料科学及其他领域的新前沿。
相关单词