neutron monochromator

简明释义

中子单色仪

英英释义

A neutron monochromator is a device used in neutron scattering experiments to select neutrons of a specific wavelength from a broader spectrum, allowing for precise measurements of material properties.

中子单色仪是一种在中子散射实验中使用的设备,用于从更广泛的光谱中选择特定波长的中子,从而允许对材料属性进行精确测量。

例句

1.The neutron monochromator helps in reducing background noise during experiments.

中子单色仪有助于减少实验过程中的背景噪声。

2.The research team used a neutron monochromator to ensure the precision of their measurements.

研究小组使用了一个中子单色仪来确保测量的精确性。

3.To achieve accurate results, we calibrated the neutron monochromator before starting the experiment.

为了获得准确的结果,我们在开始实验前对中子单色仪进行了校准。

4.The design of the neutron monochromator allows for high-resolution measurements.

中子单色仪的设计允许进行高分辨率测量。

5.In neutron scattering experiments, a neutron monochromator is essential for selecting specific wavelengths.

在中子散射实验中,中子单色仪对于选择特定波长是必不可少的。

作文

In the realm of modern physics and materials science, the term neutron monochromator refers to a crucial device used in neutron scattering experiments. Neutrons, being neutral particles, play a significant role in probing the atomic and magnetic structures of materials. The importance of the neutron monochromator lies in its ability to filter neutrons so that only those of a specific wavelength are allowed to interact with the sample under investigation. This selective filtering is essential for obtaining precise and detailed information about the material's properties.The working principle of a neutron monochromator is based on Bragg's law, which describes the condition for constructive interference of waves scattered by a crystal lattice. When a beam of neutrons strikes a crystal, certain wavelengths are diffracted at specific angles, depending on the crystal's lattice spacing. By carefully choosing the orientation of the crystal, researchers can select neutrons of a desired wavelength, effectively monochromatizing the neutron beam. This process enhances the quality of the data collected during experiments, allowing scientists to derive meaningful conclusions about the material's structure and dynamics.One of the most common types of neutron monochromator is made from single crystals of materials like silicon or graphite. These materials are chosen for their well-defined crystal structures, which allow for efficient diffraction of neutrons. The use of a neutron monochromator is particularly advantageous in studying complex materials such as biomolecules, polymers, and magnetic materials, where understanding the arrangement of atoms and their interactions is critical.Neutron scattering techniques, coupled with the use of a neutron monochromator, have become vital tools in various fields, including condensed matter physics, chemistry, and biology. For instance, researchers can utilize these techniques to investigate phase transitions in materials, study protein structures, or explore the dynamics of liquids and gases. The insights gained from such studies can lead to advancements in material design, drug development, and the understanding of fundamental physical processes.Moreover, the development of advanced neutron monochromator systems has significantly improved the efficiency and resolution of neutron scattering experiments. Innovations such as multi-channel detectors and time-of-flight techniques have contributed to a deeper understanding of materials at the atomic level. As technology continues to evolve, the capabilities of neutron monochromators are expected to expand, enabling researchers to tackle increasingly complex scientific questions.In conclusion, the neutron monochromator is an indispensable tool in the field of neutron scattering, providing researchers with the means to isolate specific neutron wavelengths for in-depth analysis of materials. Its application spans various scientific disciplines, contributing to our understanding of the microscopic world. As research progresses, the role of neutron monochromators will undoubtedly remain pivotal in unlocking new knowledge and fostering innovation in science and technology.

在现代物理学和材料科学领域,短语中子单色仪指的是在中子散射实验中使用的一种关键设备。中子作为中性粒子,在探测材料的原子和磁性结构中发挥着重要作用。中子单色仪的重要性在于其能够过滤中子,使得只有特定波长的中子可以与被研究的样品相互作用。这种选择性过滤对于获取材料属性的精确和详细信息至关重要。中子单色仪的工作原理基于布拉格定律,该定律描述了由晶体晶格散射的波的增强干涉条件。当中子束撞击晶体时,根据晶体的晶格间距,某些波长的中子会在特定角度上被衍射。通过仔细选择晶体的取向,研究人员可以选择所需波长的中子,有效地对中子束进行单色化。这个过程提高了实验中收集数据的质量,使科学家能够得出关于材料结构和动态的有意义的结论。最常见的中子单色仪之一是由硅或石墨等材料的单晶制成。这些材料因其定义明确的晶体结构而被选择,从而允许中子的高效衍射。在研究复杂材料(如生物分子、高分子和磁性材料)时,使用中子单色仪特别有利,因为了解原子的排列及其相互作用至关重要。结合中子单色仪使用的中子散射技术已成为凝聚态物理、化学和生物学等各个领域的重要工具。例如,研究人员可以利用这些技术研究材料的相变、研究蛋白质结构或探索液体和气体的动力学。从这些研究中获得的见解可以推动材料设计、药物开发以及对基本物理过程的理解。此外,先进的中子单色仪系统的发展显著提高了中子散射实验的效率和分辨率。多通道探测器和飞行时间技术等创新为深入理解材料的原子级别提供了帮助。随着技术的不断发展,中子单色仪的能力预计将扩展,使研究人员能够解决越来越复杂的科学问题。总之,中子单色仪是中子散射领域不可或缺的工具,为研究人员提供了隔离特定中子波长以进行深入分析材料的手段。它的应用跨越多个科学学科,为我们理解微观世界做出了贡献。随着研究的进展,中子单色仪的作用无疑将在揭示新知识和促进科学技术创新方面保持关键地位。

相关单词

neutron

neutron详解:怎么读、什么意思、用法

monochromator

monochromator详解:怎么读、什么意思、用法