neutron free path

简明释义

中子自由程

英英释义

The average distance traveled by a neutron between successive interactions with matter.

中子在与物质发生连续相互作用之间所经过的平均距离。

例句

1.In nuclear reactors, understanding the neutron free path 中子自由程 is crucial for effective neutron moderation.

在核反应堆中,理解neutron free path 中子自由程 对于有效的中子减速至关重要。

2.The neutron free path 中子自由程 can be calculated using the material's cross-section and density.

可以使用材料的截面和密度来计算neutron free path 中子自由程

3.Materials with high density typically have a shorter neutron free path 中子自由程, leading to more interactions.

高密度材料通常具有较短的neutron free path 中子自由程,导致更多的相互作用。

4.The average neutron free path 中子自由程 in a material determines how far neutrons can travel without interacting.

材料中的平均neutron free path 中子自由程 决定了中子在不发生相互作用的情况下可以传播多远。

5.Experimental setups often measure the neutron free path 中子自由程 to improve shielding designs.

实验装置通常测量neutron free path 中子自由程 以改善屏蔽设计。

作文

The concept of neutron free path refers to the average distance a neutron travels before it interacts with another particle. This distance is crucial in various fields, including nuclear physics and engineering, as it helps in understanding how neutrons behave in different materials. Neutrons are uncharged particles found in the nucleus of an atom, and their interactions can lead to significant changes in the material they encounter. Therefore, knowing the neutron free path is essential for designing nuclear reactors, radiation shielding, and even in medical applications such as cancer treatment.In nuclear reactors, the neutron free path plays a vital role in the fission process. When a neutron collides with a fissile material, it can cause the nucleus to split, releasing a large amount of energy. The likelihood of this interaction occurring depends on the distance the neutron can travel without being absorbed or scattered. Materials with a longer neutron free path allow neutrons to travel further, increasing the chances of fission events, while materials with a shorter path can absorb or scatter neutrons, thus reducing the efficiency of the reactor.Moreover, understanding the neutron free path is critical in radiation shielding. When designing protective barriers against neutron radiation, engineers must consider how far neutrons can penetrate into materials. Different substances have varying abilities to slow down and absorb neutrons; for instance, hydrogen-rich materials such as polyethylene are often used because they effectively reduce the energy of fast neutrons, thereby increasing the likelihood of absorption. By calculating the neutron free path, engineers can determine the necessary thickness and type of materials required to ensure safety in environments where neutron radiation is present.In the medical field, particularly in cancer treatment, the understanding of the neutron free path is also significant. Neutrons are sometimes used in radiation therapy due to their high energy and effectiveness in damaging cancer cells. However, careful consideration of the neutron free path is necessary to minimize damage to surrounding healthy tissues. By optimizing the treatment plan based on the neutron free path, doctors can enhance the therapeutic effects on tumors while reducing side effects for patients.Additionally, research in materials science often involves studying the neutron free path to develop new materials with specific properties. For example, scientists may investigate how the neutron free path changes in composite materials or alloys, which can lead to advancements in various technologies, from aerospace to electronics.In conclusion, the concept of neutron free path is fundamental to numerous scientific and engineering disciplines. It not only aids in the design and optimization of nuclear reactors and radiation shielding but also plays a crucial role in medical applications and materials research. Understanding how neutrons interact with matter through their free path allows researchers and engineers to harness their properties effectively and safely, ultimately contributing to advancements in technology and healthcare. As research continues to evolve, the significance of the neutron free path will remain a key focus in the quest for innovative solutions to complex problems.

“中子自由路径”这一概念指的是中子在与其他粒子相互作用之前所能旅行的平均距离。这一距离在核物理和工程等多个领域至关重要,因为它有助于理解中子在不同材料中的行为。中子是存在于原子核中的不带电粒子,它们的相互作用可能导致它们所遇到的材料发生重大变化。因此,了解“中子自由路径”对于设计核反应堆、辐射屏蔽,甚至在癌症治疗等医学应用中都是必不可少的。在核反应堆中,“中子自由路径”在裂变过程中起着至关重要的作用。当中子与裂变材料碰撞时,它可以导致原子核的分裂,释放出大量能量。这种相互作用发生的可能性取决于中子在被吸收或散射之前能够旅行的距离。具有较长“中子自由路径”的材料允许中子进一步旅行,从而增加裂变事件的可能性,而具有较短路径的材料则可以吸收或散射中子,从而降低反应堆的效率。此外,理解“中子自由路径”在辐射屏蔽中也至关重要。在设计抵御中子辐射的保护屏障时,工程师必须考虑中子能在材料中穿透多远。不同的物质对减速和吸收中子的能力各不相同;例如,富氢材料如聚乙烯通常被使用,因为它们有效地降低快速中子的能量,从而增加吸收的可能性。通过计算“中子自由路径”,工程师可以确定所需材料的厚度和类型,以确保在存在中子辐射的环境中的安全。在医学领域,特别是在癌症治疗中,对“中子自由路径”的理解也很重要。由于中子能量高且对癌细胞损伤效果显著,因此有时会用于放射治疗。然而,必须仔细考虑“中子自由路径”,以尽量减少对周围健康组织的损害。通过基于“中子自由路径”优化治疗方案,医生可以增强对肿瘤的治疗效果,同时减少患者的副作用。此外,材料科学中的研究通常涉及研究“中子自由路径”,以开发具有特定性能的新材料。例如,科学家可能会研究复合材料或合金中“中子自由路径”的变化,这可以推动航空航天、电子等多个技术领域的进步。总之,“中子自由路径”这一概念在众多科学和工程学科中是基础性的。它不仅有助于核反应堆和辐射屏蔽的设计与优化,还在医学应用和材料研究中发挥着关键作用。理解中子如何通过其自由路径与物质相互作用使研究人员和工程师能够有效、安全地利用它们的特性,最终为技术和医疗保健的进步做出贡献。随着研究的不断发展,“中子自由路径”的重要性将继续成为解决复杂问题的创新解决方案的关键焦点。

相关单词

neutron

neutron详解:怎么读、什么意思、用法