neutron cross section

简明释义

中子截面

英英释义

The neutron cross section is a measure of the probability of a neutron interacting with a target nucleus, expressed in units of area, typically in barns.

中子截面是中子与靶核相互作用的概率的度量,通常以面积单位表示,通常为巴恩(barns)。

例句

1.In particle physics, knowing the neutron cross section helps predict interaction rates.

在粒子物理学中,了解中子截面有助于预测相互作用率。

2.The neutron cross section can vary significantly depending on the energy of the incoming neutrons.

根据入射中子的能量,中子截面可能会显著变化。

3.The measurement of the neutron cross section is critical in nuclear reactor design.

中子截面的测量在核反应堆设计中至关重要。

4.Researchers are studying the neutron cross section for various isotopes to improve neutron sources.

研究人员正在研究各种同位素的中子截面以改善中子源。

5.The neutron cross section of materials determines their effectiveness as shielding in radiation protection.

材料的中子截面决定了它们在辐射防护中的屏蔽效果。

作文

Understanding the concept of neutron cross section is fundamental in the field of nuclear physics and engineering. The term refers to a measure of the probability that a neutron will interact with a target nucleus. This interaction can lead to various outcomes, such as scattering, absorption, or fission. The neutron cross section is expressed in units of area, typically in barns, where one barn is equal to 10^-28 square meters. This seemingly abstract concept has profound implications in numerous applications, including nuclear reactors, radiation shielding, and medical imaging.The importance of neutron cross section arises from its ability to quantify how likely a neutron will collide with a particular material. Different materials have different neutron cross sections, which means that some materials are more effective at slowing down or capturing neutrons than others. For example, materials like hydrogen-rich compounds are known for their high neutron cross section for scattering, making them ideal for moderating neutrons in nuclear reactors. Conversely, heavy metals like lead have low neutron cross sections, making them suitable for radiation shielding.In a nuclear reactor, understanding the neutron cross section of fuel and moderator materials is crucial for achieving a controlled chain reaction. The reactor's design relies on carefully chosen materials that optimize the likelihood of neutron interactions to sustain the reaction while ensuring safety. Engineers use detailed databases of neutron cross section values for various isotopes to predict the behavior of neutrons within the reactor core. This data allows them to calculate the necessary amounts of fuel and moderator to maintain a desired power output.Furthermore, the neutron cross section plays a significant role in medical applications, particularly in neutron therapy for cancer treatment. Neutrons can be used to target tumor cells more effectively than conventional X-rays due to their unique interaction properties. By selecting the right materials for neutron sources and shields, medical physicists can enhance the effectiveness of treatments while minimizing damage to surrounding healthy tissues. The neutron cross section of the tumor and surrounding tissues must be thoroughly understood to optimize treatment plans.In research settings, scientists often conduct experiments to measure the neutron cross section of new materials. These measurements help in developing new technologies and improving existing ones. By understanding how different materials interact with neutrons, researchers can tailor substances for specific applications, leading to advancements in fields such as nuclear waste management and radiation detection.In conclusion, the concept of neutron cross section is pivotal in various scientific and engineering disciplines. Its ability to describe the likelihood of neutron interactions with matter enables advancements in nuclear energy, medical therapies, and material sciences. As technology continues to evolve, the importance of accurately measuring and understanding neutron cross section values will only grow, paving the way for innovative solutions to complex challenges in our world today.

理解中子截面这一概念在核物理和工程领域是至关重要的。这个术语指的是中子与目标核相互作用的概率的度量。这种相互作用可以导致多种结果,例如散射、吸收或裂变。中子截面以面积单位表示,通常以巴恩为单位,其中一个巴恩等于10^-28平方米。这个看似抽象的概念在许多应用中具有深远的影响,包括核反应堆、辐射屏蔽和医学成像。中子截面的重要性源于它能够量化中子与特定材料碰撞的可能性。不同材料具有不同的中子截面,这意味着某些材料在减速或捕获中子方面更有效。例如,富氢化合物因其高中子截面而闻名,适合用作核反应堆中的中子慢化剂。相反,铅等重金属的中子截面较低,使它们适合用于辐射屏蔽。在核反应堆中,了解燃料和慢化剂材料的中子截面对于实现受控链式反应至关重要。反应堆的设计依赖于精心选择的材料,以优化中子相互作用的可能性,从而维持反应,同时确保安全。工程师使用各种同位素的详细数据库中的中子截面值来预测反应堆核心内中子的行为。这些数据使他们能够计算维持所需功率输出的燃料和慢化剂的必要量。此外,中子截面在医学应用中也发挥着重要作用,特别是在癌症治疗的中子疗法中。与传统的X射线相比,中子由于其独特的相互作用特性,可以更有效地针对肿瘤细胞。通过选择合适的中子源和屏蔽材料,医学物理学家可以提高治疗的有效性,同时最小化对周围健康组织的损害。必须彻底了解肿瘤及周围组织的中子截面,以优化治疗方案。在研究环境中,科学家们经常进行实验以测量新材料的中子截面。这些测量有助于开发新技术和改善现有技术。通过了解不同材料如何与中子相互作用,研究人员可以为特定应用量身定制物质,从而推动核废物管理和辐射探测等领域的进步。总之,中子截面的概念在各个科学和工程学科中都是关键的。它描述中子与物质相互作用的可能性,使得核能、医学治疗和材料科学等领域的进步成为可能。随着技术的不断发展,准确测量和理解中子截面值的重要性只会增加,为我们今天世界中复杂挑战的创新解决方案铺平道路。

相关单词

neutron

neutron详解:怎么读、什么意思、用法