neutron capture c ray logging

简明释义

中子俘获射线测井

英英释义

Neutron capture gamma ray logging is a geophysical technique used in borehole logging that detects gamma rays emitted from the capture of neutrons by atomic nuclei in the formation surrounding a well.

中子捕获伽马射线测井是一种地球物理技术,用于钻孔测井,检测从周围地层中原子核捕获中子所发出的伽马射线。

例句

1.During the geological survey, we utilized neutron capture c ray logging to accurately determine the composition of the rock formations.

在地质调查中,我们利用中子俘获伽马射线测井来准确确定岩石构造的成分。

2.By employing neutron capture c ray logging, the team was able to identify areas rich in hydrocarbons.

通过采用中子俘获伽马射线测井,团队能够识别出富含碳氢化合物的区域。

3.In our research, neutron capture c ray logging provided essential data for understanding the subsurface mineralogy.

在我们的研究中,中子俘获伽马射线测井提供了了解地下矿物学的重要数据。

4.The environmental study used neutron capture c ray logging to monitor changes in soil composition over time.

环境研究使用中子俘获伽马射线测井监测土壤成分随时间的变化。

5.The oil company relied on neutron capture c ray logging for assessing the porosity of potential drilling sites.

石油公司依靠中子俘获伽马射线测井来评估潜在钻探地点的孔隙度。

作文

The field of geophysics has made significant strides in the exploration and evaluation of subsurface materials. One of the most critical techniques employed in this domain is neutron capture c ray logging, which plays a vital role in assessing the composition and characteristics of geological formations. This method utilizes the interaction between neutrons and the nuclei of certain elements, allowing for the detection of various materials, especially hydrocarbons, in boreholes. By understanding how neutron capture c ray logging works, geologists and engineers can make informed decisions about resource extraction and environmental management.To begin with, neutron capture c ray logging involves the emission of neutrons into the surrounding rock formations. When these neutrons encounter certain isotopes, they can be absorbed, leading to the emission of gamma rays. The intensity and energy of these gamma rays are then measured by specialized instruments. This process provides valuable information about the elemental composition of the rocks, as different elements emit gamma rays of varying energies when they capture neutrons. For instance, materials rich in hydrogen, such as water and hydrocarbons, will yield distinct gamma-ray signatures compared to denser materials like iron or lead.Moreover, the advantages of neutron capture c ray logging extend beyond mere identification of materials. It offers insights into the porosity and saturation levels of reservoirs, which are crucial for oil and gas exploration. By analyzing the data obtained from this logging technique, geophysicists can determine the viability of drilling in specific locations and predict the potential yield of resources. This not only helps in optimizing extraction processes but also minimizes the environmental impact of drilling operations.However, while neutron capture c ray logging is a powerful tool, it is essential to acknowledge its limitations. The effectiveness of this method can be influenced by factors such as the presence of competing elements and the physical conditions of the formation. For example, high concentrations of certain elements may mask the signals from hydrocarbons, leading to inaccurate assessments. Therefore, it is often used in conjunction with other logging techniques to provide a more comprehensive view of the subsurface environment.In conclusion, neutron capture c ray logging is an indispensable technique in the realm of geophysical exploration. Its ability to reveal the elemental composition and characteristics of geological formations makes it a cornerstone for resource evaluation. As technology advances, the precision and efficiency of this method are expected to improve, further enhancing our understanding of the Earth's subsurface. By leveraging the capabilities of neutron capture c ray logging, we can continue to explore and manage our natural resources responsibly, ensuring a sustainable future for generations to come.

地球物理学领域在地下材料的勘探和评估方面取得了显著进展。其中一个在这个领域中使用的关键技术是中子俘获伽马射线测井,它在评估地质构造的组成和特征方面发挥着重要作用。这种方法利用中子与某些元素原子核之间的相互作用,允许在钻孔中检测各种材料,尤其是碳氢化合物。通过理解中子俘获伽马射线测井的工作原理,地质学家和工程师可以就资源开采和环境管理做出明智的决策。首先,中子俘获伽马射线测井涉及将中子发射到周围的岩石构造中。当这些中子遇到某些同位素时,它们可以被吸收,从而导致伽马射线的发射。然后,专门的仪器测量这些伽马射线的强度和能量。这个过程提供了关于岩石元素组成的宝贵信息,因为不同元素在捕获中子时会发射具有不同能量的伽马射线。例如,富含氢的材料,如水和碳氢化合物,与铁或铅等更密集的材料相比,会产生不同的伽马射线特征。此外,中子俘获伽马射线测井的优势不仅限于材料识别。它还提供了关于储层的孔隙度和饱和度水平的见解,这对石油和天然气勘探至关重要。通过分析从这种测井技术获得的数据,地球物理学家可以确定在特定位置钻探的可行性并预测资源的潜在产量。这不仅有助于优化开采过程,还最小化了钻探作业对环境的影响。然而,尽管中子俘获伽马射线测井是一种强大的工具,但必须承认其局限性。这种方法的有效性可能受到竞争元素的存在和构造物理条件等因素的影响。例如,某些元素的高浓度可能掩盖碳氢化合物的信号,导致评估不准确。因此,它通常与其他测井技术结合使用,以提供对地下环境的更全面的视图。总之,中子俘获伽马射线测井是地球物理勘探领域不可或缺的技术。它揭示地质构造的元素组成和特征的能力使其成为资源评估的基石。随着技术的进步,这种方法的精确性和效率预计将进一步提高,从而增强我们对地球地下的理解。通过利用中子俘获伽马射线测井的能力,我们可以继续负责任地探索和管理我们的自然资源,确保为后代创造可持续的未来。

相关单词

neutron

neutron详解:怎么读、什么意思、用法