polarizability
简明释义
英[ˌpəʊləˌraɪzəˈbɪlɪti]美[ˈpoʊləraɪzəˈbɪləti]
n. [电子] 极化性;[电磁] 极化度
英英释义
The ability of a molecule or atom to become polarized in an electric field, resulting in a temporary dipole moment. | 分子或原子在电场中变得极化的能力,导致暂时偶极矩的产生。 |
单词用法
高极化率 | |
低极化率 | |
分子极化率 | |
极化率张量 | |
有效极化率 | |
静态极化率 |
同义词
反义词
非极化性 | The non-polarizability of the molecule makes it less reactive. | 该分子的非极化性使其反应性较低。 | |
稳定性 | Stability in the chemical structure is crucial for predictable behavior. | 化学结构的稳定性对于可预测的行为至关重要。 |
例句
1.Changes of the nonlinear polarizability of the molecular layers can be explained by using the theory of atom-radical and valence bond.
膜层的非线性极化率的改变可用原子基团和价键理论解释。
2.In this paper, the symmetry analysis method is used to compute and analyse the rotation inertia, polarizability, selection rule in mechanics, electricity, atomic and molecular spectroscopy.
本文用对称分析方法,分析计算了力学、电学、固体物理学、原子和分子光谱学中的转动惯量、极化率、选择定则等。
3.In the article we suppose that it is a better way to study bond's polarizability that the combination of infra-red spectrum data and polarizability equation calculates effective charge.
红外光谱数据与极化方程结合计算有效电荷的方法是研究键极化性质的较好途径。
4.The calculated results indicate that molecule 1 possesses second-order nonlinear optical polarizability comparable to that of molecule 2.
计算表明分子1具有与分子2几乎相等的二阶非线性极化率。
5.The electronic spectrum and the third order nonlinear polarizability of this supramolecule were examined by ZINDO SOS method.
用ZINDOSOS方法对分子的电子光谱,三阶非线性极化率进行了计算。
6.It is indicated that electronic polarizability is related closely to element electronegativity of atoms composing of materials in early research.
早期的研究表明,材料的电子极化率与组成材料的原子的元素电负性密切相关。
7.Higher polarizability usually leads to stronger van der Waals forces between molecules.
较高的极化率通常会导致分子之间的范德华力更强。
8.Researchers are studying the polarizability of nanoparticles for use in drug delivery systems.
研究人员正在研究纳米颗粒的极化率以用于药物输送系统。
9.In spectroscopy, the polarizability is a key factor in determining how a substance absorbs energy.
在光谱学中,极化率是决定物质如何吸收能量的关键因素。
10.The polarizability of materials influences their electrical properties.
材料的极化率会影响它们的电气特性。
11.The polarizability of a molecule can greatly affect its interaction with light.
分子的极化率可以极大地影响其与光的相互作用。
作文
Understanding the concept of polarizability is essential in the field of chemistry and physics, as it describes how a molecule or atom can be distorted by an external electric field. The term polarizability refers to the ability of a substance to become polarized, meaning that the distribution of its electron cloud can shift in response to an applied electric field. This property is crucial for explaining various chemical behaviors and interactions between molecules. For example, when two molecules approach each other, their electron clouds can influence one another, leading to temporary dipoles that result in attractive forces. In a more practical sense, polarizability plays a key role in determining the physical properties of substances, such as their boiling points, solubility, and reactivity. Larger atoms with more electrons tend to have higher polarizability because their electron clouds are more easily distorted. This characteristic can help explain why larger halogens, like iodine, have higher boiling points compared to smaller halogens, like fluorine. Moreover, the concept of polarizability extends beyond simple molecular interactions. In materials science, understanding the polarizability of different materials can lead to advancements in technology, such as the development of new electronic devices or improved optical materials. For instance, materials with high polarizability can be used in the creation of efficient capacitors or in the design of nonlinear optical devices, which are crucial for applications like laser technology and telecommunications. Furthermore, polarizability is not just limited to static fields; it also plays a role in dynamic systems. When light interacts with matter, the polarizability of the material affects how light is absorbed, refracted, or scattered. This is particularly important in fields such as spectroscopy, where the polarizability can influence the spectral lines and the intensity of light emitted or absorbed by a substance. In summary, polarizability is a fundamental property that influences many aspects of chemistry and physics. By understanding how polarizability works, scientists can predict the behavior of molecules and materials under various conditions, leading to new discoveries and innovations. As research continues, the implications of polarizability will likely expand, paving the way for advancements in numerous scientific fields, from nanotechnology to biochemistry. Therefore, grasping the concept of polarizability is not only academically enriching but also practically significant for future technological developments.
理解极化率这一概念在化学和物理领域至关重要,因为它描述了分子或原子如何被外部电场扭曲。极化率一词指的是物质变得极化的能力,意味着其电子云的分布可以在施加电场的影响下发生变化。这一特性对于解释各种化学行为和分子间的相互作用至关重要。例如,当两个分子靠近时,它们的电子云可以相互影响,导致暂时的偶极,从而产生吸引力。从更实用的角度来看,极化率在决定物质的物理性质方面发挥着关键作用,例如其沸点、溶解度和反应性。较大的原子拥有更多的电子,因此通常具有较高的极化率,因为它们的电子云更容易被扭曲。这一特性可以帮助解释为什么较大的卤素,如碘,其沸点高于较小的卤素,如氟。此外,极化率的概念不仅限于简单的分子相互作用。在材料科学中,理解不同材料的极化率可以推动技术的进步,例如新电子设备或改进光学材料的开发。例如,具有高极化率的材料可以用于制造高效电容器或设计非线性光学设备,这些设备对激光技术和电信等应用至关重要。进一步说,极化率不只是静态场的属性;它还在动态系统中发挥作用。当光与物质相互作用时,材料的极化率会影响光的吸收、折射或散射。这在光谱学等领域尤其重要,因为极化率会影响谱线的强度和物质发射或吸收的光的强度。总之,极化率是影响化学和物理许多方面的基本属性。通过理解极化率的工作原理,科学家可以预测分子和材料在各种条件下的行为,从而带来新的发现和创新。随着研究的继续,极化率的影响可能会扩展,为纳米技术、生物化学等多个科学领域的进步铺平道路。因此,掌握极化率的概念不仅在学术上具有丰富意义,而且对未来技术发展也具有实际重要性。