microscopic scattering cross section
简明释义
微观散射截面
英英释义
例句
1.The microscopic scattering cross section 微观散射截面 can vary significantly depending on the energy of the incoming particles.
根据入射粒子的能量,微观散射截面 microscopic scattering cross section 可能会有显著变化。
2.Researchers often measure the microscopic scattering cross section 微观散射截面 to determine material properties at the atomic level.
研究人员通常测量微观散射截面 microscopic scattering cross section 以确定材料在原子层面的性质。
3.In nuclear physics, the microscopic scattering cross section 微观散射截面 helps predict the likelihood of neutron interactions.
在核物理中,微观散射截面 microscopic scattering cross section 有助于预测中子相互作用的可能性。
4.The calculation of the microscopic scattering cross section 微观散射截面 is crucial for understanding how particles interact with each other.
计算微观散射截面 microscopic scattering cross section 对于理解粒子之间的相互作用至关重要。
5.Understanding the microscopic scattering cross section 微观散射截面 is essential for developing new materials in nanotechnology.
理解微观散射截面 microscopic scattering cross section 对于开发纳米技术中的新材料至关重要。
作文
The term microscopic scattering cross section refers to a fundamental concept in the field of nuclear and particle physics. It is a measure of the probability that a particular interaction will occur between an incoming particle, such as a neutron or photon, and a target particle, like a nucleus or atom. This concept is crucial for understanding how particles interact at a microscopic level. The microscopic scattering cross section is typically denoted by the symbol σ (sigma) and is expressed in units of area, often in barns, where one barn equals 10^-28 square meters. To grasp the significance of the microscopic scattering cross section, it is important to consider the context of particle interactions. When a beam of particles strikes a target, not all particles will interact in the same way. Some may pass through without any interaction, while others may scatter or be absorbed. The microscopic scattering cross section quantifies the likelihood of these interactions occurring. A larger cross section indicates a higher probability of interaction, while a smaller cross section suggests that the interaction is less likely to happen.In practical applications, the microscopic scattering cross section plays a vital role in various fields, including nuclear engineering, astrophysics, and medical physics. For instance, in nuclear reactors, understanding the scattering cross sections of different materials is essential for predicting how neutrons will behave as they collide with fuel and structural materials. This knowledge helps engineers design safer and more efficient reactors.In astrophysics, the microscopic scattering cross section is used to study the interactions of cosmic rays with interstellar matter. By knowing the cross sections involved, researchers can better understand the processes that govern cosmic ray propagation and the effects of these high-energy particles on the universe.Moreover, in medical physics, the microscopic scattering cross section is crucial for radiation therapy. When designing treatment plans for cancer patients, medical physicists need to know how radiation interacts with human tissue. This interaction is characterized by the scattering cross sections of various tissues, which allows for more precise targeting of tumors while minimizing damage to surrounding healthy tissues.Understanding the microscopic scattering cross section also involves studying various factors that influence it. These include the energy of the incoming particles, the nature of the target material, and the specific interaction type (elastic or inelastic scattering). For example, elastic scattering occurs when the kinetic energy of the incoming particle is conserved during the interaction, while inelastic scattering involves a transfer of energy that may excite the target particle.In conclusion, the microscopic scattering cross section is a critical parameter in the study of particle interactions at the microscopic scale. Its implications span across multiple scientific disciplines, providing insights into the behavior of particles in various environments. By understanding this concept, scientists and engineers can make informed decisions in their respective fields, ultimately contributing to advancements in technology and our understanding of the universe. The study of microscopic scattering cross section not only enhances our theoretical knowledge but also has practical applications that impact our daily lives, from energy production to medical treatments.
术语微观散射截面是核物理和粒子物理领域的一个基本概念。它是衡量入射粒子(如中子或光子)与目标粒子(如原子核或原子)之间发生特定相互作用的概率。这个概念对于理解粒子在微观层面的相互作用至关重要。微观散射截面通常用希腊字母σ(西格玛)表示,并以面积单位表示,通常以巴恩为单位,其中一个巴恩等于10^-28平方米。要理解微观散射截面的重要性,考虑粒子相互作用的背景是很重要的。当一束粒子撞击一个目标时,并不是所有粒子都会以相同的方式相互作用。有些可能会毫无交互地通过,而其他一些则可能会散射或被吸收。微观散射截面量化了这些相互作用发生的可能性。较大的截面表示相互作用的概率较高,而较小的截面则表明相互作用不太可能发生。在实际应用中,微观散射截面在核工程、天体物理学和医学物理等多个领域中发挥着至关重要的作用。例如,在核反应堆中,了解不同材料的散射截面对于预测中子在与燃料和结构材料碰撞时的行为至关重要。这些知识帮助工程师设计更安全、更高效的反应堆。在天体物理学中,微观散射截面用于研究宇宙射线与星际物质之间的相互作用。通过了解相关的截面,研究人员可以更好地理解控制宇宙射线传播的过程以及这些高能粒子对宇宙的影响。此外,在医学物理学中,微观散射截面对于放射治疗至关重要。在为癌症患者设计治疗计划时,医学物理学家需要知道辐射如何与人体组织相互作用。这种相互作用由各种组织的散射截面来表征,从而实现对肿瘤的更精确靶向,同时最小化对周围健康组织的损害。理解微观散射截面还涉及研究影响其的各种因素。这些因素包括入射粒子的能量、目标材料的性质以及特定的相互作用类型(弹性散射或非弹性散射)。例如,弹性散射发生在入射粒子的动能在相互作用过程中得以保持时,而非弹性散射则涉及能量转移,可能会激发目标粒子。总之,微观散射截面是研究微观尺度上粒子相互作用的关键参数。它的影响跨越多个科学学科,为我们提供了关于粒子在各种环境中行为的见解。通过理解这一概念,科学家和工程师可以在各自的领域做出明智的决策,最终推动技术进步和我们对宇宙的理解。对微观散射截面的研究不仅增强了我们的理论知识,还有实际应用,影响着我们的日常生活,从能源生产到医疗治疗。
相关单词