mean free path for collision
简明释义
碰撞平均自由程
英英释义
The mean free path for collision is the average distance a particle travels between successive collisions with other particles in a medium. | 碰撞的平均自由程是指粒子在介质中连续碰撞之间所经过的平均距离。 |
例句
1.In a gas, the mean free path for collision 碰撞的平均自由程 determines how far a molecule travels before colliding with another.
在气体中,碰撞的平均自由程 mean free path for collision 决定了分子在与另一分子碰撞之前能行进多远。
2.A larger mean free path for collision 碰撞的平均自由程 indicates less frequent collisions in a gas.
较大的 碰撞的平均自由程 mean free path for collision 表明气体中碰撞的频率较低。
3.In plasma physics, the mean free path for collision 碰撞的平均自由程 plays a crucial role in understanding particle behavior.
在等离子体物理中,碰撞的平均自由程 mean free path for collision 在理解粒子行为方面起着关键作用。
4.The mean free path for collision 碰撞的平均自由程 is affected by temperature and pressure in a gas.
气体中的温度和压力会影响 碰撞的平均自由程 mean free path for collision。
5.Engineers must calculate the mean free path for collision 碰撞的平均自由程 to optimize the design of reactors.
工程师们必须计算 碰撞的平均自由程 mean free path for collision 以优化反应器的设计。
作文
The concept of mean free path for collision is fundamental in the study of kinetic theory and statistical mechanics. It refers to the average distance a particle travels between successive collisions with other particles. Understanding this concept is crucial in various fields, including physics, chemistry, and engineering. In essence, the mean free path for collision helps us quantify how particles interact with each other in a gas or liquid, providing insights into the behavior of matter at a microscopic level.To illustrate the significance of the mean free path for collision, let us consider the behavior of gas molecules in a closed container. When gas is introduced into the container, the molecules move freely until they collide with one another or with the walls of the container. The mean free path for collision can be influenced by several factors, including the temperature of the gas, the density of the particles, and the size of the molecules. Higher temperatures lead to increased molecular speeds, resulting in more frequent collisions and a shorter mean free path for collision. Conversely, in a denser gas, molecules are closer together, which also decreases the average distance traveled before a collision occurs.In practical applications, the mean free path for collision has important implications for understanding diffusion processes, thermal conductivity, and viscosity in fluids. For instance, in the field of aerodynamics, knowing the mean free path for collision can help engineers design more efficient aircraft by predicting how air flows over wings at different altitudes and speeds. Similarly, in semiconductor manufacturing, controlling the mean free path for collision is essential for achieving the desired properties of materials used in electronic devices.Moreover, the mean free path for collision plays a critical role in nuclear physics. When particles such as neutrons travel through a material, their likelihood of causing reactions depends on the mean free path for collision within that material. This understanding is vital for designing reactors and ensuring safety in nuclear energy production.To calculate the mean free path for collision, one can use the formula: λ = kT / (sqrt(2) * π * d^2 * P), where λ is the mean free path, k is the Boltzmann constant, T is the temperature, d is the diameter of the molecules, and P is the pressure. This equation highlights the relationship between molecular characteristics and environmental conditions, allowing scientists to predict how particles will behave under various scenarios.In summary, the concept of mean free path for collision is essential for understanding the interactions of particles in various states of matter. Its applications span across multiple disciplines, providing valuable insights into both theoretical and practical aspects of science and engineering. By grasping the principles behind the mean free path for collision, we can better comprehend the complexities of the microscopic world and its impact on macroscopic phenomena. As research continues to advance, the importance of this concept will only grow, paving the way for new discoveries and innovations in technology and science.
“碰撞的平均自由程”这一概念在动理论和统计力学的研究中具有基础性的重要性。它指的是粒子在与其他粒子发生连续碰撞之间所行进的平均距离。理解这一概念对于物理、化学和工程等多个领域至关重要。实质上,“碰撞的平均自由程”帮助我们量化气体或液体中粒子之间的相互作用,提供了对物质在微观层面行为的洞察。为了说明“碰撞的平均自由程”的重要性,让我们考虑封闭容器中气体分子的行为。当气体被引入容器时,分子自由移动,直到它们与其他分子或容器壁发生碰撞。“碰撞的平均自由程”会受到多个因素的影响,包括气体的温度、粒子的密度和分子的大小。较高的温度会导致分子速度增加,从而导致更频繁的碰撞,缩短“碰撞的平均自由程”。相反,在密度较大的气体中,分子彼此靠得更近,这也减少了在发生碰撞之前的平均行进距离。在实际应用中,“碰撞的平均自由程”对理解流体中的扩散过程、热导率和粘度具有重要意义。例如,在空气动力学领域,了解“碰撞的平均自由程”可以帮助工程师设计更高效的飞机,通过预测不同高度和速度下空气如何流过机翼来实现类似目标。同样,在半导体制造中,控制“碰撞的平均自由程”对于实现电子器件中材料所需的特性至关重要。此外,“碰撞的平均自由程”在核物理中也起着关键作用。当中子等粒子穿过某种材料时,它们引发反应的可能性取决于该材料内的“碰撞的平均自由程”。这种理解对于设计反应堆和确保核能生产的安全性至关重要。要计算“碰撞的平均自由程”,可以使用公式:λ = kT / (sqrt(2) * π * d^2 * P),其中λ是平均自由程,k是玻尔兹曼常数,T是温度,d是分子的直径,P是压力。这个方程突出了分子特性与环境条件之间的关系,使科学家能够预测粒子在各种场景下的行为。总之,“碰撞的平均自由程”这一概念对于理解不同物态中粒子的相互作用至关重要。其应用跨越多个学科,为科学和工程的理论与实践方面提供了宝贵的见解。通过掌握“碰撞的平均自由程”背后的原理,我们可以更好地理解微观世界的复杂性及其对宏观现象的影响。随着研究的不断深入,这一概念的重要性只会增加,为科技和科学的新发现与创新铺平道路。
相关单词