maxwellian distribution

简明释义

麦克斯韦分布

英英释义

The Maxwellian distribution is a statistical distribution of speeds of particles in an ideal gas, derived from the principles of classical mechanics and kinetic theory, describing how velocities are distributed among the particles in thermal equilibrium.

麦克斯韦分布是理想气体中粒子速度的统计分布,源于经典力学和动力学理论的原理,描述了在热平衡状态下粒子速度的分布情况。

例句

1.Researchers found that the energy distribution of the particles adhered to a maxwellian distribution (麦克斯韦分布) at high temperatures.

研究人员发现,粒子的能量分布在高温下遵循maxwellian distribution麦克斯韦分布)。

2.In the context of kinetic theory, the maxwellian distribution (麦克斯韦分布) helps explain the pressure exerted by gases.

在动理论的背景下,maxwellian distribution麦克斯韦分布)有助于解释气体施加的压力。

3.The experiment confirmed that under thermal equilibrium, the particle speeds were consistent with a maxwellian distribution (麦克斯韦分布).

实验确认,在热平衡下,粒子速度与maxwellian distribution麦克斯韦分布)一致。

4.In statistical mechanics, the velocities of gas particles follow a maxwellian distribution (麦克斯韦分布), which describes how speeds are distributed in an ideal gas.

在统计力学中,气体粒子的速度遵循maxwellian distribution麦克斯韦分布),它描述了理想气体中速度的分布。

5.When simulating gas behavior, it is crucial to implement a maxwellian distribution (麦克斯韦分布) to accurately represent molecular velocities.

在模拟气体行为时,实施maxwellian distribution麦克斯韦分布)以准确表示分子速度是至关重要的。

作文

The concept of maxwellian distribution is fundamental in the field of statistical mechanics and thermodynamics. This distribution describes the velocities of particles in a gas that is in thermal equilibrium. Understanding this concept can provide insights into the behavior of gases, which is crucial for various scientific and engineering applications.To grasp the essence of maxwellian distribution, it is important to recognize that it is named after the Scottish physicist James Clerk Maxwell, who formulated this distribution in the 19th century. Maxwell's work laid the foundation for kinetic theory, which explains how the microscopic properties of particles relate to the macroscopic properties of materials. The maxwellian distribution specifically characterizes the probability of finding a particle with a certain velocity in a gas at a given temperature.In essence, the maxwellian distribution shows that not all particles in a gas move at the same speed. Instead, there is a range of speeds, with some particles moving very quickly and others moving more slowly. The distribution is typically represented as a bell-shaped curve when plotted, indicating that most particles have speeds around the average, while fewer particles have very high or very low speeds.The significance of the maxwellian distribution extends beyond theoretical physics; it has practical implications in fields such as chemistry, engineering, and even environmental science. For example, understanding how gas molecules behave can help in predicting the outcomes of chemical reactions, optimizing industrial processes, and improving air quality models.Moreover, the maxwellian distribution serves as a cornerstone for more advanced topics in physics, such as the Boltzmann distribution and the study of non-ideal gases. It also plays a role in understanding phenomena like diffusion and thermal conductivity. In essence, the knowledge of this distribution allows scientists and engineers to make predictions about how gases will behave under various conditions, which is vital for both theoretical explorations and practical applications.In conclusion, the maxwellian distribution is a key concept that helps us understand the motion of particles in a gas. Its implications are vast, impacting various scientific disciplines and practical applications. By studying this distribution, we gain valuable insights into the nature of matter and the principles governing physical systems. As we continue to explore the universe at both micro and macro levels, the maxwellian distribution remains an essential tool in our scientific arsenal, illuminating the path toward deeper comprehension of the natural world.

麦克斯韦分布”这一概念在统计力学和热力学领域中是基础性的。该分布描述了在热平衡状态下气体中粒子的速度。理解这个概念可以为我们提供对气体行为的深刻见解,这对于各种科学和工程应用至关重要。要掌握“麦克斯韦分布”的本质,重要的是要认识到它是以苏格兰物理学家詹姆斯·克拉克·麦克斯韦的名字命名的,他在19世纪提出了这一分布。麦克斯韦的工作为动理论奠定了基础,动理论解释了粒子的微观特性如何与材料的宏观特性相关。“麦克斯韦分布”具体描述了在给定温度下,找到具有特定速度的粒子的概率。本质上,“麦克斯韦分布”显示了气体中的粒子并不是以相同的速度运动的。相反,存在一系列的速度,有些粒子运动得非常快,而其他粒子则运动得较慢。当绘制时,分布通常呈现为一个钟形曲线,表明大多数粒子的速度接近平均值,而速度非常高或非常低的粒子则较少。“麦克斯韦分布”的重要性超越了理论物理学,它在化学、工程甚至环境科学等领域具有实际意义。例如,了解气体分子的行为可以帮助预测化学反应的结果,优化工业过程,并改善空气质量模型。此外,“麦克斯韦分布”作为更高级物理主题的基石,如玻尔兹曼分布和非理想气体的研究。它还在理解扩散和热导率等现象中发挥着作用。本质上,了解这种分布使科学家和工程师能够预测气体在各种条件下的行为,这对理论探索和实际应用都是至关重要的。总之,“麦克斯韦分布”是一个关键概念,帮助我们理解气体中粒子的运动。它的影响广泛,影响着各种科学学科和实际应用。通过研究这种分布,我们获得了对物质本质和支配物理系统原理的宝贵见解。随着我们继续在微观和宏观层面探索宇宙,“麦克斯韦分布”仍然是我们科学工具箱中的一个重要工具,照亮了我们对自然世界更深理解的道路。

相关单词

distribution

distribution详解:怎么读、什么意思、用法