mass spectrometer

简明释义

质谱仪

英英释义

A mass spectrometer is an analytical instrument used to measure the mass-to-charge ratio of ions, allowing for the identification and quantification of chemical compounds.

质谱仪是一种分析仪器,用于测量离子的质荷比,从而实现化合物的识别和定量。

例句

1.Researchers utilized a mass spectrometer to study protein interactions.

研究人员利用质谱仪研究蛋白质相互作用。

2.In forensic science, a mass spectrometer can be used to analyze substances found at crime scenes.

在法医科学中,质谱仪可用于分析在犯罪现场发现的物质。

3.The mass spectrometer is essential for determining molecular weights accurately.

为了准确确定分子量,质谱仪是必不可少的。

4.The lab uses a mass spectrometer to analyze the chemical composition of the samples.

实验室使用质谱仪分析样品的化学成分。

5.A mass spectrometer can help identify unknown compounds in a mixture.

一台质谱仪可以帮助识别混合物中的未知化合物。

作文

The field of analytical chemistry has seen remarkable advancements over the past few decades, and one of the most significant developments is the invention of the mass spectrometer. A mass spectrometer is an instrument that measures the mass-to-charge ratio of ions. This powerful tool allows scientists to identify and quantify various substances in a sample by measuring the mass of their ions. The principle behind this technology is relatively straightforward: ions are generated from the sample, accelerated, and then deflected based on their mass-to-charge ratios. This process results in a spectrum that can be analyzed to determine the composition of the original sample.The importance of the mass spectrometer in modern science cannot be overstated. In fields such as biochemistry, pharmacology, and environmental science, it plays a crucial role in research and development. For instance, in drug development, researchers utilize the mass spectrometer to analyze the purity of compounds and to understand their metabolic pathways within biological systems. By providing detailed information about molecular structures, the mass spectrometer enables scientists to make informed decisions during the drug design process.Moreover, the mass spectrometer is not limited to just the pharmaceutical industry. It is widely used in proteomics, the study of proteins, where it helps to identify and quantify proteins in complex biological samples. This application is essential for understanding diseases at the molecular level and for developing targeted therapies. The ability of the mass spectrometer to analyze small quantities of material makes it an invaluable tool in clinical diagnostics, where it can detect biomarkers associated with specific diseases.In addition to its applications in health sciences, the mass spectrometer is also instrumental in environmental monitoring. For example, it can detect trace levels of pollutants in air, water, and soil samples, helping to assess environmental health and safety. This capability is increasingly important as concerns about pollution and climate change grow. Regulatory agencies rely on data obtained from mass spectrometers to ensure compliance with environmental laws and standards.Furthermore, the evolution of mass spectrometer technology has led to the development of various types, including time-of-flight (TOF), ion trap, and quadrupole mass spectrometers, each with unique advantages suited for different applications. These innovations allow for greater sensitivity and resolution, enabling researchers to detect even the smallest molecules in complex mixtures.In conclusion, the mass spectrometer is an essential instrument in the toolkit of modern scientists. Its ability to provide precise measurements of mass and composition has revolutionized various fields, from drug discovery to environmental science. As technology continues to advance, we can expect the mass spectrometer to play an even more significant role in scientific research and innovation. Understanding how to operate and interpret data from a mass spectrometer is a valuable skill for aspiring chemists and researchers, making it a critical area of study in analytical chemistry courses worldwide.

分析化学领域在过去几十年中取得了显著的进展,其中最重要的发展之一就是质谱仪的发明。质谱仪是一种测量离子的质量与电荷比的仪器。这种强大的工具通过测量离子的质量,允许科学家识别和定量样本中的各种物质。该技术背后的原理相对简单:离子从样本中生成,经过加速,然后根据其质量与电荷比进行偏转。这个过程产生一个光谱,可以分析以确定原始样本的成分。在现代科学中,质谱仪的重要性不容小觑。在生物化学、药理学和环境科学等领域,它在研究和开发中发挥着至关重要的作用。例如,在药物开发中,研究人员利用质谱仪分析化合物的纯度,并了解它们在生物系统中的代谢途径。通过提供关于分子结构的详细信息,质谱仪使科学家能够在药物设计过程中做出明智的决策。此外,质谱仪不仅限于制药行业。它在蛋白质组学中广泛应用,帮助识别和定量复杂生物样本中的蛋白质。这一应用对于理解疾病在分子水平上的机制以及开发靶向疗法至关重要。质谱仪分析少量材料的能力使其成为临床诊断中不可或缺的工具,能够检测与特定疾病相关的生物标志物。除了在健康科学中的应用外,质谱仪在环境监测中也起着重要作用。例如,它可以检测空气、水和土壤样本中微量污染物,帮助评估环境健康和安全。随着对污染和气候变化的关注日益增加,这种能力变得越来越重要。监管机构依赖于从质谱仪获得的数据,以确保遵守环境法律和标准。此外,质谱仪技术的演变导致了各种类型的发展,包括飞行时间(TOF)、离子阱和四极杆质谱仪,每种都有适合不同应用的独特优势。这些创新提高了灵敏度和分辨率,使研究人员能够在复杂混合物中检测到甚至是最小的分子。总之,质谱仪是现代科学家工具箱中必不可少的仪器。它提供精确的质量和成分测量的能力,彻底改变了从药物发现到环境科学的各个领域。随着技术的不断进步,我们可以期待质谱仪在科学研究和创新中发挥更重要的作用。理解如何操作和解释来自质谱仪的数据是未来化学家和研究人员的一项宝贵技能,使其成为全球分析化学课程中的关键学习领域。

相关单词

spectrometer

spectrometer详解:怎么读、什么意思、用法