macroscopic transport cross section
简明释义
宏观输运截面
英英释义
例句
1.Understanding the macroscopic transport cross section 宏观传输截面 helps engineers design more efficient nuclear reactors.
理解宏观传输截面有助于工程师设计更高效的核反应堆。
2.Researchers are currently studying how changes in temperature affect the macroscopic transport cross section 宏观传输截面 of various materials.
研究人员目前正在研究温度变化如何影响各种材料的宏观传输截面。
3.The macroscopic transport cross section 宏观传输截面 is often used in Monte Carlo simulations to predict particle interactions.
在蒙特卡罗模拟中,通常使用宏观传输截面来预测粒子相互作用。
4.In radiation shielding, the macroscopic transport cross section 宏观传输截面 determines how effectively materials can block different types of radiation.
在辐射屏蔽中,宏观传输截面决定了材料阻挡不同类型辐射的有效性。
5.The calculation of the macroscopic transport cross section 宏观传输截面 is crucial for understanding neutron behavior in nuclear reactors.
计算宏观传输截面对于理解核反应堆中中子的行为至关重要。
作文
In the field of nuclear engineering and radiation physics, understanding the concept of macroscopic transport cross section is crucial for analyzing how neutrons and other particles interact with matter. The term refers to a measure that encapsulates the likelihood of scattering and absorption events occurring when particles pass through a material. Essentially, it serves as a bridge between microscopic interactions, which are governed by quantum mechanics, and the macroscopic behavior of materials as observed in practical applications. The macroscopic transport cross section can be thought of as an averaged representation of the complex behavior of individual particles, allowing engineers and scientists to predict how radiation will behave in different environments.To grasp the importance of this concept, one must first consider the microscopic cross section, which quantifies the probability of interaction between a single particle and an atom within a material. However, in real-world scenarios, we are often dealing with bulk materials rather than isolated atoms. This is where the macroscopic transport cross section comes into play. It combines the microscopic properties of the material—such as density and atomic composition—with the individual probabilities of interaction to provide a comprehensive view of how radiation propagates through the medium.For instance, in nuclear reactors, the macroscopic transport cross section is vital for calculating the behavior of neutrons as they move through fuel and moderator materials. By using the macroscopic transport cross section, engineers can determine how effectively the reactor can sustain a chain reaction or how much shielding is needed to protect personnel from harmful radiation. Furthermore, accurate predictions based on this concept are essential for optimizing reactor design, enhancing safety protocols, and ensuring efficient energy production.Moreover, the macroscopic transport cross section is not only relevant in nuclear engineering but also plays a significant role in medical physics, particularly in radiation therapy. In this context, understanding how radiation interacts with biological tissues is critical for maximizing treatment efficacy while minimizing damage to healthy cells. By applying the principles of macroscopic transport cross section, medical physicists can better plan radiation doses and improve patient outcomes.In conclusion, the concept of macroscopic transport cross section is a fundamental aspect of both nuclear engineering and radiation physics. It provides a necessary framework for understanding how particles interact with materials on a larger scale, enabling professionals to make informed decisions in various applications, from nuclear reactors to medical treatments. As technology advances and our understanding of these interactions deepens, the significance of the macroscopic transport cross section will continue to grow, highlighting its essential role in the safe and effective use of radiation in our society.
在核工程和辐射物理学领域,理解“宏观传输截面”这一概念对于分析中子和其他粒子与物质的相互作用至关重要。这个术语指的是一种度量,概括了当粒子穿过材料时散射和吸收事件发生的可能性。实质上,它作为微观相互作用(由量子力学支配)与材料的宏观行为之间的桥梁,后者在实际应用中可被观察到。“宏观传输截面”可以被视为个别粒子复杂行为的平均表示,使工程师和科学家能够预测辐射在不同环境中的表现。要理解这个概念的重要性,首先必须考虑微观截面,它量化了单个粒子与材料内原子之间相互作用的概率。然而,在现实世界场景中,我们通常处理的是块状材料,而不是孤立的原子。这就是“宏观传输截面”发挥作用的地方。它将材料的微观特性(如密度和原子组成)与个体相互作用的概率结合起来,提供了辐射如何在介质中传播的全面视图。例如,在核反应堆中,“宏观传输截面”对计算中子在燃料和调节材料中移动的行为至关重要。通过使用“宏观传输截面”,工程师可以确定反应堆维持链式反应的有效性或保护人员免受有害辐射所需的屏蔽量。此外,基于这一概念的准确预测对优化反应堆设计、增强安全协议以及确保高效能量生产都是必不可少的。此外,“宏观传输截面”不仅在核工程中相关,在医学物理学中也发挥着重要作用,特别是在放射治疗中。在这种情况下,理解辐射与生物组织的相互作用对于最大化治疗效果,同时最小化对健康细胞的损害至关重要。通过应用“宏观传输截面”的原理,医学物理学家可以更好地规划辐射剂量,提高患者的治疗效果。总之,“宏观传输截面”的概念是核工程和辐射物理学的一个基本方面。它提供了理解粒子在更大范围内与材料相互作用的必要框架,使专业人员能够在各种应用中做出明智的决策,从核反应堆到医疗治疗。随着技术的进步和我们对这些相互作用的理解加深,“宏观传输截面”的重要性将继续增长,突显其在我们社会中安全有效利用辐射的基本作用。
相关单词