internal conversion
简明释义
内转换
英英释义
Internal conversion is a non-radiative process in which an excited molecule transfers its energy to another electronic state without emitting a photon. | 内部转换是一种非辐射过程,激发分子将其能量转移到另一个电子态,而不发出光子。 |
例句
1.Understanding internal conversion is crucial for designing efficient photonic devices.
理解内部转换对设计高效光子设备至关重要。
2.The phenomenon of internal conversion can lead to heat generation in materials after they absorb energy.
在材料吸收能量后,内部转换现象可能导致热量产生。
3.In quantum mechanics, internal conversion refers to a non-radiative process where an excited electron transitions to a lower energy state without emitting a photon.
在量子力学中,内部转换指的是一种非辐射过程,其中激发电子在不发射光子的情况下过渡到较低的能量状态。
4.Researchers are studying internal conversion in organic compounds to develop better light-emitting devices.
研究人员正在研究有机化合物中的内部转换,以开发更好的发光设备。
5.The efficiency of solar cells can be improved by enhancing the internal conversion rates of absorbed photons.
通过提高吸收光子的内部转换速率,可以提高太阳能电池的效率。
作文
In the realm of physics, particularly in the study of molecular and atomic processes, the term internal conversion refers to a non-radiative process where an excited molecule transfers its energy to another internal degree of freedom, such as vibrational or rotational modes, rather than emitting a photon. This phenomenon is crucial for understanding various chemical reactions and the behavior of excited states in molecules. 内部转换是指一种非辐射过程,其中激发的分子将其能量转移到其他内部自由度,例如振动或旋转模式,而不是发射光子。 The significance of internal conversion can be observed in numerous applications, ranging from photochemistry to laser technology. For instance, when a molecule absorbs light, it often reaches an excited state. Instead of emitting light as it returns to a lower energy state, it may undergo internal conversion, dissipating energy through vibrations and heat. This process can influence the efficiency of solar cells, as the energy lost through 内部转换 can reduce the amount of usable energy harnessed from sunlight.Moreover, internal conversion plays a vital role in the field of fluorescence and phosphorescence. In fluorescence, a molecule quickly returns to its ground state by emitting a photon. However, if internal conversion occurs, the excited state may transition to a different electronic state, leading to a delayed emission of light, known as phosphorescence. Understanding this distinction is essential for developing materials with desired luminescent properties.Another critical aspect of internal conversion is its impact on biological systems. For example, in photosynthesis, plants capture sunlight and convert it into chemical energy. The efficiency of this conversion process can be affected by internal conversion, as excess energy may be lost instead of being used for biochemical reactions. Researchers are continually studying these mechanisms to enhance the efficiency of artificial photosynthesis systems, which aim to replicate nature's ability to convert sunlight into energy.In the context of spectroscopy, internal conversion can complicate the interpretation of experimental results. When analyzing the spectra of excited molecules, scientists must account for the possibility that internal conversion has occurred, leading to unexpected peaks or shifts in the spectrum. By understanding and modeling this process, researchers can gain deeper insights into molecular dynamics and interactions.In conclusion, the concept of internal conversion is fundamental in various scientific fields, including chemistry, biology, and materials science. Its implications range from influencing energy transfer processes in solar cells to affecting the behavior of fluorescent materials. By exploring the intricacies of 内部转换, scientists can develop innovative technologies and improve our understanding of the natural world. As research in this area progresses, we can expect to uncover more about the mechanisms that govern energy transfer and conversion at the molecular level, paving the way for advancements in energy efficiency and material design.
在物理学领域,特别是在分子和原子过程的研究中,术语内部转换指的是一种非辐射过程,其中激发的分子将其能量转移到其他内部自由度,如振动或旋转模式,而不是发射光子。这个现象对于理解各种化学反应和分子中激发态的行为至关重要。内部转换的重要性可以在许多应用中观察到,从光化学到激光技术。例如,当分子吸收光时,它通常会达到一个激发态。它可能会通过内部转换而不是发射光子返回较低能量状态,从而通过振动和热量耗散能量。这一过程可能影响太阳能电池的效率,因为通过内部转换损失的能量会减少从阳光中获取的可用能量。此外,内部转换在荧光和磷光领域也发挥着重要作用。在荧光中,分子通过发射光子快速返回基态。然而,如果发生内部转换,激发态可能会过渡到不同的电子态,导致延迟的光发射,这被称为磷光。理解这一区别对于开发具有所需发光特性的材料至关重要。内部转换的另一个关键方面是其对生物系统的影响。例如,在光合作用中,植物捕获阳光并将其转化为化学能。这个转化过程的效率可能受到内部转换的影响,因为多余的能量可能会丧失,而不是用于生化反应。研究人员不断研究这些机制,以提高人工光合作用系统的效率,这些系统旨在复制自然将阳光转化为能量的能力。在光谱学的背景下,内部转换可能会使实验结果的解释变得复杂。当分析激发分子的光谱时,科学家必须考虑发生内部转换的可能性,这可能导致光谱中出现意外的峰值或位移。通过理解和建模这一过程,研究人员可以深入了解分子动力学和相互作用。总之,内部转换的概念在化学、生物学和材料科学等多个科学领域中都是基础性的。它的影响范围从影响太阳能电池中的能量转移过程到影响荧光材料的行为。通过探索内部转换的复杂性,科学家们可以开发创新技术并改善我们对自然世界的理解。随着该领域研究的进展,我们可以期待揭示更多关于支配分子级别能量转移和转换机制的内容,为能源效率和材料设计的进步铺平道路。
相关单词