integral number
简明释义
整数
英英释义
An integral number is a whole number that can be either positive, negative, or zero, and does not include any fractional or decimal part. | 整数是一个可以是正数、负数或零的完整数字,不包括任何分数或小数部分。 |
例句
1.When counting items, you can only have an integral number 整数 of them.
在计算物品时,您只能拥有 integral number 整数 的数量。
2.In mathematics, an integral number 整数 is any whole number, whether positive or negative.
在数学中,integral number 整数 是任何完整的数字,无论是正数还是负数。
3.In programming, some functions return an integral number 整数 as part of their output.
在编程中,一些函数返回一个 integral number 整数 作为其输出的一部分。
4.The formula requires an integral number 整数 for accurate results.
该公式需要一个 integral number 整数 以获得准确的结果。
5.To calculate the average, you must use an integral number 整数 of data points.
要计算平均值,您必须使用一个 integral number 整数 的数据点。
作文
In mathematics, the concept of an integral number is fundamental. An integral number refers to any whole number, whether positive, negative, or zero, that does not include fractions or decimals. This category of numbers plays a crucial role in various fields of mathematics, including algebra, number theory, and even in practical applications such as computer science and engineering. Understanding integral numbers is essential for anyone looking to grasp the basics of mathematical concepts.The significance of integral numbers can be seen in everyday life. For instance, when counting objects, we often use integral numbers. If you have three apples, you would say you have 3 (an integral number), not 3.5 or 2.8. This simplicity makes integral numbers the building blocks of more complex mathematical operations. They are used in basic arithmetic, where addition, subtraction, multiplication, and division can all be performed with integral numbers without any complications arising from fractions or decimals.Moreover, integral numbers are critical in algebra. In equations, integral numbers can represent constants or variables. For example, in the equation x + 5 = 10, both 5 and 10 are integral numbers. Solving for x gives us another integral number, which in this case is 5. This ability to manipulate integral numbers allows us to understand and solve problems systematically.In number theory, integral numbers are studied for their properties and relationships. For example, prime numbers, which are a subset of integral numbers, are defined as numbers greater than 1 that have no divisors other than 1 and themselves. The study of prime numbers has fascinated mathematicians for centuries and has led to significant discoveries in mathematics.In the realm of computer science, integral numbers are equally important. They are often used in programming and algorithms, where operations on integral numbers are typically more efficient than those involving floating-point numbers. For example, when iterating through arrays or performing loops, integral numbers serve as indices, allowing programmers to access specific elements quickly and efficiently.Furthermore, understanding integral numbers is vital in statistics. When collecting data, researchers often use integral numbers to represent counts or frequencies. For instance, if a survey reports that 150 people attended an event, that number is an integral number. It provides a clear and concise way to communicate quantitative information.In conclusion, the concept of an integral number is more than just a basic mathematical term; it is a foundational element that underpins many aspects of mathematics and its applications. From counting objects in our daily lives to solving complex equations in algebra and analyzing data in statistics, integral numbers are everywhere. By mastering the understanding of integral numbers, individuals can build a solid foundation in mathematics, paving the way for further studies and practical applications in various fields. Thus, the importance of integral numbers cannot be overstated, as they are indeed integral to the world of mathematics and beyond.
在数学中,整数的概念是基础性的。整数指的是任何完整的数字,无论是正数、负数还是零,不包括分数或小数。这类数字在多个数学领域中扮演着至关重要的角色,包括代数、数论,甚至在计算机科学和工程等实际应用中。理解整数对任何想要掌握基本数学概念的人来说都是必要的。整数的重要性可以在日常生活中看到。例如,在计数物体时,我们通常使用整数。如果你有三个苹果,你会说你有3(一个整数),而不是3.5或2.8。这种简单性使得整数成为更复杂数学运算的基石。它们被用于基本算术,其中加法、减法、乘法和除法都可以用整数进行,而不会因分数或小数而出现任何复杂情况。此外,整数在代数中也至关重要。在方程中,整数可以表示常数或变量。例如,在方程x + 5 = 10中,5和10都是整数。求解x会给我们另一个整数,在这种情况下是5。这种操作整数的能力使我们能够系统地理解和解决问题。在数论中,整数因其属性和关系而受到研究。例如,素数是整数的一个子集,定义为大于1且只有1和自身两个因子的数字。对素数的研究吸引了数百年来的数学家,并导致了数学领域的重要发现。在计算机科学领域,整数同样重要。它们通常用于编程和算法中,涉及整数的操作通常比涉及浮点数的操作更高效。例如,在遍历数组或执行循环时,整数作为索引,可以快速有效地访问特定元素。此外,理解整数在统计学中至关重要。在收集数据时,研究人员经常使用整数来表示计数或频率。例如,如果一项调查报告称150人参加了一个活动,那么这个数字就是一个整数。它提供了一种清晰简明的方式来传达定量信息。总之,整数的概念不仅仅是一个基本的数学术语;它是一个基础元素,支撑着许多数学及其应用的各个方面。从日常生活中计数物体到在代数中解决复杂方程,再到在统计学中分析数据,整数无处不在。通过掌握对整数的理解,个人可以在数学上建立坚实的基础,为进一步的学习和各种领域的实际应用铺平道路。因此,整数的重要性不容小觑,因为它们确实是数学及其他领域的核心。
相关单词