gravitational segregation
简明释义
重力分离
英英释义
例句
1.The gravitational segregation 重力分离 in the sediment layers provided valuable information about the geological history of the area.
沉积层中的重力分离提供了该地区地质历史的宝贵信息。
2.The study focused on how gravitational segregation 重力分离 affects the distribution of minerals in mining operations.
研究集中于重力分离如何影响矿业操作中矿物的分布。
3.In a zero-gravity environment, gravitational segregation 重力分离 does not occur, complicating the separation of materials.
在零重力环境中,重力分离不会发生,这使得材料分离变得复杂。
4.In planetary formation, gravitational segregation 重力分离 plays a crucial role in determining the composition of celestial bodies.
在行星形成过程中,重力分离在决定天体组成方面起着关键作用。
5.During the experiment, we observed that the particles underwent gravitational segregation 重力分离 based on their densities.
在实验中,我们观察到颗粒根据其密度经历了重力分离。
作文
Gravitational segregation is a fascinating phenomenon that occurs in various natural and artificial systems. It refers to the tendency of particles or materials to separate based on their density under the influence of gravity. This process can be observed in many contexts, from the formation of planets to the settling of sediment in bodies of water. Understanding gravitational segregation (重力分离) helps us gain insights into geological processes, material science, and even astrophysics. In geological terms, gravitational segregation (重力分离) plays a crucial role in the formation of sedimentary rocks. As rivers carry sediments downstream, the heavier particles tend to settle more quickly than lighter ones. This results in layers of sediment that are stratified by size and weight. Over time, these layers can harden into rock, preserving a record of the environment at the time of deposition. This process not only illustrates the power of gravity but also highlights the dynamic nature of Earth's surface.In the context of planetary formation, gravitational segregation (重力分离) is essential for understanding how celestial bodies develop. When a planet forms, it begins as a mixture of various materials. As the planet grows, gravity pulls denser materials towards the center, while lighter materials remain closer to the surface. This segregation leads to the formation of distinct layers within the planet, such as the core, mantle, and crust. For example, Earth’s core is primarily composed of iron and nickel, while the crust consists of lighter silicate minerals. This layering not only affects the planet’s geology but also its magnetic field and tectonic activity.In material science, gravitational segregation (重力分离) is an important consideration during processes like powder metallurgy and the manufacturing of composite materials. When mixing different powders, the varying densities can cause the heavier particles to settle at the bottom of the mixture, leading to inconsistencies in the final product. To counteract this, manufacturers often employ techniques such as vibration or fluidization to ensure a homogeneous mix. This application of gravitational segregation (重力分离) principles demonstrates how understanding this phenomenon can lead to better engineering practices and improved material properties.Furthermore, gravitational segregation (重力分离) is also relevant in environmental science, particularly in the study of sediment transport and deposition in rivers and oceans. Understanding how different materials settle can help scientists predict changes in ecosystems, especially in areas affected by human activities such as mining, construction, and pollution. By studying these processes, researchers can develop strategies to mitigate negative impacts on the environment.In conclusion, gravitational segregation (重力分离) is a fundamental concept that spans multiple disciplines, including geology, astrophysics, material science, and environmental science. Its implications are vast, influencing everything from the formation of our planet to the development of new materials. By studying this phenomenon, we can better understand the natural world and improve our technological advancements. The interplay between gravity and material properties continues to be a rich area of research, revealing the complex dynamics that govern both our planet and the universe at large.
重力分离是一个有趣的现象,发生在各种自然和人工系统中。它指的是在重力的影响下,颗粒或材料根据其密度分离的倾向。这个过程可以在许多背景下观察到,从行星的形成到水体中沉积物的沉降。理解重力分离(gravitational segregation)有助于我们深入了解地质过程、材料科学甚至天体物理学。在地质学方面,重力分离(gravitational segregation)在沉积岩的形成中起着至关重要的作用。当河流将沉积物向下游运输时,较重的颗粒往往比较轻的颗粒更快沉降。这导致了按大小和重量分层的沉积物层。随着时间的推移,这些层可以硬化成岩石,保留当时沉积环境的记录。这个过程不仅展示了重力的力量,还突显了地球表面的动态特性。在行星形成的背景下,重力分离(gravitational segregation)对于理解天体如何发展至关重要。当一个行星形成时,它开始时是各种材料的混合物。随着行星的增长,重力将更密集的材料拉向中心,而较轻的材料则留在表面附近。这种分离导致行星内部形成不同的层,如核心、地幔和地壳。例如,地球的核心主要由铁和镍组成,而地壳则由较轻的硅酸盐矿物组成。这种分层不仅影响行星的地质结构,还影响其磁场和构造活动。在材料科学中,重力分离(gravitational segregation)是在粉末冶金和复合材料制造等过程中需要考虑的重要因素。在混合不同粉末时,密度的差异可能导致较重的颗粒沉降在混合物的底部,从而导致最终产品的不一致性。为了应对这一问题,制造商通常采用振动或流化等技术,以确保均匀的混合。这种应用重力分离(gravitational segregation)原理的做法展示了理解这一现象如何能带来更好的工程实践和改进的材料性能。此外,重力分离(gravitational segregation)在环境科学中也相关,特别是在研究河流和海洋中的沉积物运输和沉积时。了解不同材料如何沉降可以帮助科学家预测生态系统的变化,尤其是在受到人类活动(如采矿、建设和污染)影响的地区。通过研究这些过程,研究人员可以制定策略,以减轻对环境的负面影响。总之,重力分离(gravitational segregation)是一个基本概念,跨越多个学科,包括地质学、天体物理学、材料科学和环境科学。其影响广泛,影响从我们星球的形成到新材料的发展。通过研究这一现象,我们可以更好地理解自然世界并改善我们的技术进步。重力与材料特性之间的相互作用仍然是一个丰富的研究领域,揭示了支配我们星球和宇宙整体的复杂动态。
相关单词