gamma isomer

简明释义

同质异能素

英英释义

A gamma isomer is a specific type of isomer that differs from another isomer in the arrangement of atoms or groups within a molecule, particularly at the gamma position, which is typically the third carbon atom away from a functional group.

伽马异构体是一种特定类型的异构体,其在分子内部原子或基团的排列上与另一种异构体不同,特别是在伽马位置,即通常指距功能组第三个碳原子的位置。

例句

1.Researchers are exploring the potential applications of gamma isomer (伽马异构体) in materials science.

研究人员正在探索gamma isomer伽马异构体)在材料科学中的潜在应用。

2.In our experiments, we isolated the gamma isomer (伽马异构体) from the compound mixture.

在我们的实验中,我们从化合物混合物中分离出gamma isomer伽马异构体)。

3.The synthesis of gamma isomer (伽马异构体) requires specific conditions to achieve optimal results.

合成gamma isomer伽马异构体)需要特定条件以获得最佳结果。

4.The study revealed that the presence of gamma isomer (伽马异构体) can significantly enhance the drug's efficacy.

研究表明,存在的gamma isomer伽马异构体)可以显著提高药物的疗效。

5.The gamma isomer (伽马异构体) exhibited unique properties that were not found in other isomers.

gamma isomer伽马异构体)表现出其他异构体未发现的独特性质。

作文

In the realm of chemistry, isomers play a crucial role in understanding the properties and behaviors of compounds. Among the various types of isomers, the term gamma isomer (伽马异构体) is particularly significant. Isomers are molecules that share the same molecular formula but differ in the arrangement of atoms, leading to variations in their chemical and physical properties. The gamma isomer refers specifically to a type of stereoisomer that differs from its counterparts, such as alpha and beta isomers, by the spatial orientation of certain functional groups or atoms within the molecule.To explore the concept of the gamma isomer (伽马异构体), it is essential to first understand the broader category of isomerism. Isomerism can be classified into structural isomers and stereoisomers. Structural isomers have the same molecular formula but differ in the connectivity of their atoms, while stereoisomers have the same connectivity but differ in the three-dimensional arrangement of atoms. The gamma isomer falls under the category of stereoisomers, where the orientation of specific groups can significantly affect the compound's reactivity and interaction with other substances.A classic example of a gamma isomer (伽马异构体) can be found in the case of cyclic compounds. Consider a cyclic alkane with substituents at different positions. The gamma isomer may have a substituent located at a position that is three carbons away from a reference point, distinguishing it from the alpha and beta isomers, which have substituents at one and two carbons away, respectively. This subtle difference in structure can lead to notable differences in boiling points, solubility, and biological activity.The significance of gamma isomers (伽马异构体) extends beyond theoretical chemistry; they often play pivotal roles in pharmaceuticals and biochemistry. For instance, in drug design, the presence of a gamma isomer can influence the efficacy and safety profile of a medication. Some drugs may exhibit desired therapeutic effects in one isomeric form while causing adverse effects in another. Therefore, understanding the nuances of gamma isomers is fundamental for chemists and pharmacologists alike.Furthermore, the study of gamma isomers (伽马异构体) contributes to the development of chiral compounds, which are molecules that cannot be superimposed on their mirror images. Chiral compounds are vital in various industries, particularly in the production of enantiomerically pure drugs. The ability to isolate and synthesize specific gamma isomers can lead to advancements in creating more effective and safer medications.In conclusion, the term gamma isomer (伽马异构体) encapsulates a fascinating aspect of isomerism that has far-reaching implications in both theoretical and applied chemistry. By understanding the unique characteristics of gamma isomers (伽马异构体), scientists can better predict how different compounds will behave in various environments, paving the way for innovations in drug design and other chemical applications. As research continues to evolve, the importance of gamma isomers will undoubtedly remain a key focus in the exploration of chemical diversity and functionality.

在化学领域,异构体在理解化合物的性质和行为中起着至关重要的作用。在各种类型的异构体中,术语伽马异构体gamma isomer)尤其重要。异构体是指具有相同分子式但原子排列不同的分子,这导致它们在化学和物理性质上的变化。伽马异构体gamma isomer)专指一种立体异构体,它与其对应的α和β异构体在分子内某些官能团或原子的空间取向上有所不同。要探讨伽马异构体gamma isomer)的概念,首先必须理解异构现象的更广泛类别。异构现象可以分为结构异构体和立体异构体。结构异构体具有相同的分子式,但原子的连接方式不同,而立体异构体则具有相同的连接方式,但原子的三维排列不同。伽马异构体gamma isomer)属于立体异构体的范畴,其中特定基团的取向会显著影响化合物的反应性和与其他物质的相互作用。伽马异构体gamma isomer)的经典例子可以在环状化合物中找到。考虑一个具有不同位置取代基的环烷烃。伽马异构体可能具有一个位于参考点三碳远处的取代基,从而将其与α和β异构体区分开来,后者的取代基分别位于一碳和两碳远处。结构上的这种微小差异可能导致沸点、溶解度和生物活性等方面的显著差异。伽马异构体gamma isomer)的重要性超越了理论化学;它们常常在制药和生物化学中发挥关键作用。例如,在药物设计中,伽马异构体的存在可能影响药物的疗效和安全性。一些药物可能在一种异构形式下表现出期望的治疗效果,而在另一种形式下则引起不良反应。因此,理解伽马异构体的细微差别对于化学家和药理学家来说至关重要。此外,对伽马异构体gamma isomer)的研究有助于手性化合物的发展,手性化合物是指无法与其镜像重叠的分子。手性化合物在多个行业中至关重要,特别是在生产对映体纯药物的过程中。分离和合成特定的伽马异构体gamma isomer)的能力可以推动创造更有效和更安全的药物的进展。总之,术语伽马异构体gamma isomer)概括了异构现象的一个迷人方面,具有广泛的理论和应用化学意义。通过理解伽马异构体gamma isomer)的独特特征,科学家可以更好地预测不同化合物在各种环境中的行为,为药物设计和其他化学应用的创新铺平道路。随着研究的不断发展,伽马异构体的重要性无疑将继续成为化学多样性和功能性探索的关键焦点。

相关单词

gamma

gamma详解:怎么读、什么意思、用法