fusion physics

简明释义

聚变物理学

英英释义

Fusion physics is the branch of physics that studies the processes and principles involved in nuclear fusion, where two light atomic nuclei combine to form a heavier nucleus, releasing energy in the process.

聚变物理学是研究核聚变过程和原理的物理学分支,在核聚变中,两个轻原子核结合形成一个更重的原子核,并释放能量。

例句

1.Understanding fusion physics 聚变物理学 is crucial for the future of nuclear energy.

理解聚变物理学 fusion physics对核能的未来至关重要。

2.Students studying fusion physics 聚变物理学 often work with complex simulations and models.

学习聚变物理学 fusion physics的学生通常会处理复杂的模拟和模型。

3.The conference on fusion physics 聚变物理学 attracted experts from around the world.

关于聚变物理学 fusion physics的会议吸引了来自世界各地的专家。

4.Researchers at the lab are making significant advancements in fusion physics 聚变物理学 to develop sustainable energy sources.

实验室的研究人员在聚变物理学 fusion physics方面取得了重大进展,以开发可持续的能源来源。

5.The latest experiments in fusion physics 聚变物理学 have shown promising results for energy production.

最新的聚变物理学 fusion physics实验显示出有希望的能源生产结果。

作文

Fusion physics, or 聚变物理, is a branch of physics that studies the process of nuclear fusion, where two light atomic nuclei combine to form a heavier nucleus, releasing a significant amount of energy in the process. This phenomenon is not only the source of energy for stars, including our sun, but it also holds immense potential for sustainable energy on Earth. Understanding 聚变物理 is crucial as it could provide a near-limitless source of energy, with minimal environmental impact compared to fossil fuels and even fission reactors.The basic principle behind 聚变物理 involves the overcoming of the electrostatic repulsion between positively charged nuclei. At extremely high temperatures, typically in the range of millions of degrees Celsius, the kinetic energy of the nuclei is sufficient to allow them to collide and fuse together, forming a new element while releasing energy according to Einstein's equation E=mc². This process is what powers the sun and other stars, and replicating it on Earth has been a significant scientific challenge.Research in 聚变物理 focuses on various methods to achieve controlled nuclear fusion. One of the most studied approaches is magnetic confinement fusion, which uses powerful magnetic fields to contain the hot plasma in which fusion occurs. The tokamak design, developed in the Soviet Union, is one of the most prominent examples of this method. Another approach is inertial confinement fusion, which involves compressing a small pellet of fusion fuel using intense laser beams or other forms of energy.The potential benefits of mastering 聚变物理 are enormous. Unlike fossil fuels, fusion does not produce greenhouse gases or long-lived radioactive waste. The primary fuels for fusion, isotopes of hydrogen such as deuterium and tritium, are abundant and can be extracted from water or produced from lithium. This makes fusion a highly attractive option for meeting the world's growing energy demands while addressing climate change.However, the journey towards practical fusion energy is fraught with challenges. Achieving the necessary conditions for fusion—high temperature, high pressure, and sufficient confinement time—has proven to be exceptionally difficult. Current experimental reactors, such as ITER (International Thermonuclear Experimental Reactor) being built in France, aim to demonstrate the feasibility of fusion as a large-scale and carbon-free source of energy. ITER represents a collaborative effort among many countries and is expected to pave the way for future commercial fusion power plants.In conclusion, 聚变物理 is a vital field of study that promises to revolutionize our energy landscape. By unlocking the secrets of nuclear fusion, we could harness a powerful and clean energy source that would significantly reduce our reliance on fossil fuels and mitigate the impacts of climate change. Continued investment in research and development in 聚变物理 will be essential to turn this dream into reality, ensuring a sustainable future for generations to come.

聚变物理是研究核聚变过程的物理学分支,其中两个轻原子核结合形成一个更重的原子核,并在此过程中释放出大量能量。这一现象不仅是包括我们太阳在内的恒星的能量来源,而且也为地球上的可持续能源提供了巨大的潜力。理解聚变物理至关重要,因为它可能提供几乎无限的能源,且与化石燃料甚至裂变反应堆相比,环境影响极小。聚变物理的基本原理涉及克服带正电核之间的静电排斥。在极高的温度下,通常在数百万摄氏度的范围内,核的动能足以使它们碰撞并融合在一起,形成新的元素,同时根据爱因斯坦的方程E=mc²释放能量。这个过程正是太阳和其他恒星的动力,而在地球上复制这一过程是一个重大的科学挑战。聚变物理的研究集中在实现受控核聚变的各种方法上。其中一种最常研究的方法是磁约束聚变,它使用强大的磁场来限制发生聚变的高温等离子体。托卡马克设计是在苏联开发的,是这种方法中最突出的例子之一。另一种方法是惯性约束聚变,它涉及使用强烈的激光束或其他形式的能量压缩聚变燃料的小颗粒。掌握聚变物理的潜在好处是巨大的。与化石燃料不同,聚变不会产生温室气体或长寿命的放射性废物。聚变的主要燃料,氢的同位素如氘和氚,丰富且可以从水中提取或从锂中生产。这使得聚变成为满足全球日益增长的能源需求,同时应对气候变化的一个非常有吸引力的选择。然而,通往实用聚变能源的道路充满挑战。实现聚变所需的条件——高温、高压和足够的约束时间——被证明是极其困难的。目前的实验反应堆,如正在法国建设的国际热核聚变实验反应堆(ITER),旨在证明聚变作为大规模和无碳能源的可行性。ITER代表了多个国家的合作努力,预计将为未来商业聚变电站铺平道路。总之,聚变物理是一个重要的研究领域,承诺将彻底改变我们的能源格局。通过揭开核聚变的秘密,我们可以利用一种强大而清洁的能源来源,这将显著减少我们对化石燃料的依赖,并减轻气候变化的影响。继续对聚变物理的研究和开发进行投资对于将这一梦想变为现实至关重要,以确保后代可持续的未来。

相关单词

fusion

fusion详解:怎么读、什么意思、用法

physics

physics详解:怎么读、什么意思、用法