fusion energy
简明释义
聚变能量
英英释义
Fusion energy is the energy released when two light atomic nuclei combine to form a heavier nucleus, a process that powers stars, including the sun. | 聚变能是指当两个轻原子核结合形成一个较重的原子核时释放的能量,这一过程为包括太阳在内的恒星提供能量。 |
例句
1.The potential of fusion energy 核聚变能 could revolutionize the way we power our cities.
利用核聚变能 fusion energy 的潜力可能会彻底改变我们为城市供电的方式。
2.The ITER project aims to demonstrate the feasibility of fusion energy 核聚变能 as a large-scale energy source.
国际热核聚变实验堆(ITER)项目旨在证明核聚变能 fusion energy 作为大规模能源来源的可行性。
3.One of the main advantages of fusion energy 核聚变能 is that it produces minimal radioactive waste.
核聚变能 fusion energy 的主要优点之一是它产生的放射性废物极少。
4.Countries around the world are investing in fusion energy 核聚变能 research to combat climate change.
世界各国正在投资于核聚变能 fusion energy 研究,以应对气候变化。
5.Scientists are researching how to harness fusion energy 核聚变能 for sustainable electricity production.
科学家们正在研究如何利用核聚变能 fusion energy 来生产可持续的电力。
作文
Fusion energy, or 聚变能, is a form of energy that is generated when atomic nuclei combine to form a heavier nucleus. This process releases a tremendous amount of energy, which can be harnessed for various applications, particularly in electricity generation. The sun, for instance, produces energy through nuclear fusion, where hydrogen nuclei fuse to create helium and release energy in the form of light and heat. Understanding 聚变能 is crucial for the future of energy production, especially as the world grapples with climate change and the need for sustainable energy sources.One of the primary advantages of 聚变能 is its potential to provide a nearly limitless source of energy. Unlike fossil fuels, which are finite and contribute to greenhouse gas emissions, fusion relies on isotopes of hydrogen, such as deuterium and tritium, which can be extracted from water and lithium. This means that the fuel for fusion reactors is abundant and can be sourced sustainably. Furthermore, the byproducts of fusion are far less harmful than those of fission or fossil fuels, producing minimal radioactive waste and no carbon emissions.Despite these advantages, the development of 聚变能 technology has faced significant challenges. The conditions required for nuclear fusion are extreme, necessitating temperatures of millions of degrees Celsius to overcome the electrostatic repulsion between positively charged nuclei. Scientists and engineers have been working on various methods to achieve these conditions, including magnetic confinement in devices like tokamaks and inertial confinement using lasers.Recent advancements in research and technology have brought us closer to realizing practical 聚变能. Projects like ITER (International Thermonuclear Experimental Reactor) in France aim to demonstrate the feasibility of fusion as a large-scale energy source. If successful, ITER could pave the way for commercial fusion power plants, providing a safe, clean, and virtually inexhaustible energy supply.Moreover, the implications of achieving viable 聚变能 extend beyond just energy production. It could significantly reduce our dependence on fossil fuels, leading to a decrease in air pollution and greenhouse gas emissions. This shift could help mitigate the effects of climate change and promote a healthier environment for future generations.In conclusion, 聚变能 represents a promising avenue for addressing the world's energy needs sustainably. While there are still hurdles to overcome, the potential benefits of fusion energy make it a critical area of research. As scientists continue to innovate and push the boundaries of what is possible, we may one day harness the same energy that powers the stars, providing a cleaner and more sustainable future for all.
聚变能是一种通过原子核结合形成较重的原子核而产生的能量形式。这个过程释放出巨大的能量,可以用于各种应用,特别是在发电方面。例如,太阳通过核聚变产生能量,其中氢核融合形成氦并以光和热的形式释放能量。理解聚变能对于未来的能源生产至关重要,尤其是在世界面临气候变化和可持续能源需求的背景下。聚变能的主要优势之一是它能够提供几乎无限的能源来源。与有限且会导致温室气体排放的化石燃料不同,聚变依赖于氢的同位素,如氘和氚,这些同位素可以从水和锂中提取。这意味着聚变反应堆的燃料丰富且可以可持续获取。此外,聚变的副产品远比裂变或化石燃料的副产品危害小,产生的放射性废物极少且没有碳排放。尽管有这些优势,聚变能技术的发展面临重大挑战。核聚变所需的条件极为严苛,需要达到数百万摄氏度的温度,以克服带正电荷的核之间的静电排斥力。科学家和工程师一直在研究各种方法来实现这些条件,包括在托卡马克等设备中进行磁约束和使用激光进行惯性约束。最近的研究和技术进展使我们更接近实现实用的聚变能。法国的国际热核聚变实验反应堆(ITER)等项目旨在证明聚变作为大规模能源来源的可行性。如果成功,ITER可能为商业聚变电厂铺平道路,提供安全、清洁和几乎无穷无尽的能源供应。此外,实现可行的聚变能的影响超出了仅仅是能源生产。它可以显著减少我们对化石燃料的依赖,从而降低空气污染和温室气体排放。这一转变有助于减轻气候变化的影响,并为未来几代人创造一个更健康的环境。总之,聚变能代表了以可持续方式解决全球能源需求的有希望的途径。尽管仍有障碍需要克服,但聚变能的潜在好处使其成为一个关键的研究领域。随着科学家们不断创新并推动可能性的边界,我们可能有一天能够利用与星星相同的能量,为所有人提供一个更清洁和更可持续的未来。
相关单词