fusion core

简明释义

聚变反应堆芯

英英释义

A fusion core is a component used in nuclear fusion reactions that contains the fuel for the reaction, typically isotopes of hydrogen such as deuterium and tritium.

聚变核心是用于核聚变反应的一个组件,包含反应所需的燃料,通常是氢的同位素,如氘和氚。

In the context of energy production, a fusion core refers to the central part of a fusion reactor where the fusion process occurs and energy is generated.

在能源生产的背景下,聚变核心指的是聚变反应堆的中心部分,在这里发生聚变过程并产生能量。

例句

1.The fusion core in this prototype is capable of sustaining high temperatures.

这个原型中的聚变核心能够维持高温。

2.We need to monitor the fusion core closely to prevent any overheating.

我们需要密切监测聚变核心以防止过热。

3.The new reactor design utilizes a powerful fusion core to generate clean energy.

新的反应堆设计利用了强大的聚变核心来产生清洁能源。

4.The fusion core technology promises to revolutionize energy production.

聚变核心技术有望彻底改变能源生产。

5.Scientists are researching ways to stabilize the fusion core for better energy output.

科学家们正在研究如何稳定聚变核心以提高能量输出。

作文

The concept of the fusion core is often associated with advanced energy generation and futuristic technology. In simple terms, a fusion core refers to a central component in a fusion reactor where nuclear fusion occurs. This process involves combining light atomic nuclei to form heavier nuclei, releasing a significant amount of energy in the process. The idea of harnessing energy through fusion has been a subject of research for decades, as it promises a clean and virtually limitless source of power. Unlike fossil fuels, which emit harmful greenhouse gases, fusion produces minimal waste and does not contribute to climate change. One of the most intriguing aspects of the fusion core is its potential to solve the energy crisis that many countries face today. With the world's population steadily increasing and energy demands soaring, traditional energy sources are becoming less viable. The fusion core could provide a sustainable alternative that meets global energy needs without depleting natural resources or harming the environment. Moreover, research into the fusion core has led to advancements in various scientific fields. For example, understanding plasma physics is crucial for developing efficient fusion reactors. Scientists study how to contain and stabilize the superheated plasma needed for fusion reactions, which can reach temperatures hotter than the sun. These studies not only contribute to energy production but also enhance our knowledge of fundamental physics. In recent years, there have been significant strides in fusion research, with projects like ITER (International Thermonuclear Experimental Reactor) making headlines. ITER aims to create a working fusion core that can produce more energy than it consumes, paving the way for future commercial fusion power plants. The success of such projects could revolutionize the energy sector and provide a reliable source of energy for generations to come. However, challenges remain in achieving a practical fusion core. The technology is still in its infancy, and scientists must overcome numerous technical hurdles before fusion can become a mainstream energy source. Issues such as maintaining stable plasma conditions, managing heat loads, and developing materials that can withstand extreme environments are critical areas of ongoing research. Despite these challenges, the vision of a world powered by fusion cores is an inspiring prospect. It represents hope for a future where energy is abundant, clean, and accessible to all. As we continue to explore the possibilities of fusion technology, it is essential to invest in research and development to unlock the full potential of the fusion core. Only then can we ensure a sustainable energy future for our planet, one that aligns with environmental goals and supports economic growth. In conclusion, the fusion core symbolizes the intersection of innovation and sustainability. It embodies humanity's quest for cleaner energy solutions that can address the pressing challenges of our time. As we move forward, the pursuit of fusion energy will undoubtedly play a crucial role in shaping a brighter and more sustainable future for all.

“核聚变核心”的概念通常与先进的能源生成和未来科技相关。简单来说,核聚变核心是指在核聚变反应堆中发生核聚变的中心组件。这个过程涉及将轻原子核结合形成较重的原子核,并在此过程中释放出大量能量。利用核聚变来获取能量的想法已经研究了几十年,因为它承诺提供一种清洁且几乎无限的能源来源。与释放有害温室气体的化石燃料不同,核聚变产生的废物极少,并且不会导致气候变化。核聚变核心最引人入胜的方面之一是它有潜力解决许多国家面临的能源危机。随着世界人口不断增加和能源需求飙升,传统能源来源变得越来越不可行。核聚变核心可以提供一种可持续的替代方案,满足全球能源需求,而不会耗尽自然资源或伤害环境。此外,对核聚变核心的研究推动了多个科学领域的进步。例如,了解等离子体物理学对于开发高效的核聚变反应堆至关重要。科学家们研究如何控制和稳定进行核聚变反应所需的超热等离子体,温度可以达到比太阳还要高。这些研究不仅有助于能源生产,还增强了我们对基本物理学的理解。近年来,核聚变研究取得了重大进展,像国际热核聚变实验堆(ITER)这样的项目备受关注。ITER旨在创建一个能够产生比消耗更多能量的工作核聚变核心,为未来商业核聚变电厂铺平道路。这类项目的成功可能会彻底改变能源行业,为未来几代人提供可靠的能源来源。然而,实现实用的核聚变核心仍然面临挑战。这项技术仍处于初级阶段,科学家们必须克服许多技术障碍,才能使核聚变成为主流能源来源。保持稳定的等离子体条件、管理热负荷以及开发能够承受极端环境的材料等问题是当前研究的关键领域。尽管面临这些挑战,但由核聚变核心提供动力的世界的愿景是一个鼓舞人心的前景。它代表着一个能源丰富、清洁且人人可及的未来的希望。随着我们继续探索核聚变技术的可能性,投资于研究和开发以解锁核聚变核心的全部潜力至关重要。只有这样,我们才能确保我们的星球拥有可持续的能源未来,这与环境目标相一致并支持经济增长。总之,核聚变核心象征着创新与可持续性的交汇点。它体现了人类对更清洁能源解决方案的追求,这些解决方案可以应对我们时代的紧迫挑战。随着我们向前迈进,追求核聚变能源无疑将在塑造一个更加光明和可持续的未来中发挥至关重要的作用。

相关单词

fusion

fusion详解:怎么读、什么意思、用法