fundamental oscillation
简明释义
基本振荡
英英释义
Fundamental oscillation refers to the primary or lowest frequency of oscillation in a system, which serves as the basis for higher harmonics or overtones. | 基本振荡指的是一个系统中主要或最低的振荡频率,它作为更高谐波或泛音的基础。 |
例句
1.In quantum mechanics, the fundamental oscillation 基本振荡 of particles can determine their energy levels.
在量子力学中,粒子的基本振荡 fundamental oscillation 可以决定它们的能量水平。
2.In physics, the concept of fundamental oscillation 基本振荡 helps explain wave phenomena.
在物理学中,基本振荡 fundamental oscillation 的概念有助于解释波动现象。
3.Scientists observed the fundamental oscillation 基本振荡 of the electromagnetic field in their experiments.
科学家在实验中观察到了电磁场的基本振荡 fundamental oscillation。
4.The fundamental oscillation 基本振荡 frequency is crucial for tuning radio transmitters.
对于调谐无线电发射器来说,基本振荡 fundamental oscillation 频率至关重要。
5.The fundamental oscillation 基本振荡 of a guitar string creates the musical note that we hear.
吉他弦的基本振荡 fundamental oscillation 产生了我们听到的音乐音符。
作文
In the realm of physics, the concept of fundamental oscillation (基本振荡) plays a crucial role in understanding various phenomena. Oscillation refers to the repetitive variation, typically in time, of some measure about a central value or between two or more different states. This concept can be observed in numerous systems, from simple pendulums to complex mechanical systems, and even in the behavior of particles at the quantum level.At its core, fundamental oscillation (基本振荡) represents the simplest form of oscillatory motion. For instance, consider a mass attached to a spring. When the mass is displaced from its equilibrium position and released, it will oscillate back and forth around that central point. The frequency of this motion is determined by the properties of the spring and the mass itself. This fundamental frequency is what we refer to as the fundamental oscillation (基本振荡). It serves as the building block for more complex oscillatory behaviors.The importance of fundamental oscillation (基本振荡) extends beyond mechanical systems. In electrical engineering, circuits exhibit oscillatory behavior as well. For example, in an LC circuit (a circuit containing an inductor and a capacitor), the energy oscillates between the electric field of the capacitor and the magnetic field of the inductor. The frequency of this oscillation is also termed the fundamental oscillation (基本振荡) of the circuit, and it determines how the circuit will respond to different signals.Moreover, in the field of acoustics, fundamental oscillation (基本振荡) is vital for understanding sound waves. When a musical instrument is played, it produces sound through vibrations. The lowest frequency of vibration produced by the instrument is known as the fundamental frequency, which correlates directly to the fundamental oscillation (基本振荡) of the instrument. This frequency defines the pitch of the sound, while higher frequencies correspond to harmonics that enrich the sound quality.In addition to these applications, fundamental oscillation (基本振荡) has significant implications in quantum mechanics. Particles such as electrons exhibit wave-like behavior, and their fundamental oscillations can be described using wave functions. These oscillations are integral to understanding phenomena like electron orbitals in atoms, where the fundamental oscillation (基本振荡) contributes to the stability and energy levels of electrons.The study of fundamental oscillation (基本振荡) not only enhances our comprehension of physical systems but also paves the way for technological advancements. Engineers and scientists utilize the principles of oscillation to design various devices, from clocks and radios to advanced communication systems. Understanding the fundamental oscillation (基本振荡) allows for optimized performance and innovation in technology.In conclusion, the notion of fundamental oscillation (基本振荡) is deeply embedded in the fabric of physics and engineering. Its applications span across multiple disciplines, illustrating the interconnectedness of natural phenomena. By grasping the essence of fundamental oscillation (基本振荡), we not only gain insight into the workings of the universe but also harness this knowledge to create and improve technologies that enhance our daily lives.
在物理学领域,fundamental oscillation(基本振荡)这一概念在理解各种现象中发挥着至关重要的作用。振荡是指某种度量在时间上的重复变化,通常围绕一个中心值或在两个或多个不同状态之间变化。这个概念可以在许多系统中观察到,从简单的摆到复杂的机械系统,甚至在量子层面上粒子的行为中也能看到。从本质上讲,fundamental oscillation(基本振荡)代表了振荡运动的最简单形式。例如,考虑一个附着在弹簧上的质量。当该质量从其平衡位置偏移并释放时,它将围绕该中心点来回振荡。这种运动的频率由弹簧和质量本身的特性决定。这个基本频率就是我们所称的fundamental oscillation(基本振荡)。它是更复杂的振荡行为的构建块。fundamental oscillation(基本振荡)的重要性不仅限于机械系统。在电气工程中,电路也表现出振荡行为。例如,在LC电路(包含电感器和电容器的电路)中,能量在电容器的电场和电感器的磁场之间振荡。这种振荡的频率也被称为电路的fundamental oscillation(基本振荡),它决定了电路对不同信号的响应方式。此外,在声学领域,fundamental oscillation(基本振荡)对于理解声波至关重要。当乐器演奏时,通过振动产生声音。乐器产生的最低频率振动被称为基频,与乐器的fundamental oscillation(基本振荡)直接相关。这个频率定义了声音的音高,而更高的频率对应于丰富声音质量的谐波。除了这些应用,fundamental oscillation(基本振荡)在量子力学中也具有重要意义。粒子如电子表现出波动行为,其基本振荡可以用波函数描述。这些振荡对于理解原子中电子轨道等现象至关重要,其中fundamental oscillation(基本振荡)有助于电子的稳定性和能级。fundamental oscillation(基本振荡)的研究不仅增强了我们对物理系统的理解,还为技术进步铺平了道路。工程师和科学家利用振荡原理设计各种设备,从时钟和收音机到先进的通信系统。理解fundamental oscillation(基本振荡)使得性能优化和技术创新成为可能。总之,fundamental oscillation(基本振荡)的概念深深嵌入物理学和工程学的基础中。它的应用跨越多个学科,展示了自然现象之间的相互联系。通过掌握fundamental oscillation(基本振荡)的本质,我们不仅能够深入理解宇宙的运作,还能够利用这一知识创造和改善增强我们日常生活的技术。
相关单词