quadrant
简明释义
n. 象限;[海洋][天] 象限仪;四分之一圆
复 数 q u a d r a n t s
英英释义
单词用法
坐标象限 | |
象限系统 | |
圆的象限 | |
北部象限 | |
南部象限 | |
东部象限 | |
西部象限 | |
象限图表 |
同义词
部分 | The map is divided into four sections for easier navigation. | 地图被分为四个部分,以便于导航。 | |
四分之一 | 圆的每个四分之一代表一个不同的象限。 | ||
片段 | 数据通过片段进行分析,以识别趋势。 | ||
区域 | 城市的这个区域以其生动的文化而闻名。 |
反义词
整体 | 这个项目需要一种全新的方法。 | ||
全部 | We need to consider the entirety of the situation before making a decision. | 在做决定之前,我们需要考虑整个情况。 |
例句
1.The Shared memory available per instance, then becomes, 1gb plus whatever space is still available in quadrant 4.
于是,每个实例的可用共享内存就变为1gb加上象限4中仍然可用的空间。
2.Each segment can only map to either quadrant 3 or 4, but not both.
每个段只能映射到象限3或象限4中的某一个象限,但是不能同时映射到这两个象限。
3.Quadrant 2 (1GB) is reserved for Global Program Data.
象限2 (1GB)被预留给全局程序数据。
4.The combination of quadrant 1 and 2 (minus kernel and other process memory) can be used for private memory.
象限1和2(减去内核内存和其他进程内存)可以一起用作私有内存。
5.Each quadrant on the computer screen corresponds to a different command and each flashes at a different frequency.
电脑屏幕被平均分为四块,每块屏幕对应一个不同的控制口令,同时每块屏幕都在以不同的频率发光。
6.The generalization of the quadrant and octant to arbitrary number of dimensions is the orthant.
将四象限和八象限推广到任意维数是正交的。
7.In a Cartesian plane, the second quadrant (第二象限) has a negative x and a positive y.
在笛卡尔平面中,第二象限具有负的x和正的y。
8.In the first quadrant (第一象限), both x and y coordinates are positive.
在第一象限中,x和y坐标都是正数。
9.To plot the points correctly, make sure to identify which quadrant (象限) they belong to.
为了正确绘制这些点,确保识别它们属于哪个象限。
10.The polar coordinate system uses quadrants (象限) to describe angles and distances.
极坐标系统使用象限来描述角度和距离。
11.The graph is divided into four sections, known as the four quadrants (象限).
这个图表被分成四个部分,称为四个象限。
作文
In the realm of mathematics and science, the term quadrant (象限) holds significant importance, particularly when discussing the Cartesian coordinate system. The Cartesian plane is divided into four distinct sections, each referred to as a quadrant (象限). These sections are defined by the intersection of the x-axis and y-axis, which creates a grid-like structure that allows for the precise plotting of points. Understanding these quadrants (象限) is essential for students and professionals alike, as they provide a framework for analyzing and interpreting data. The first quadrant (象限) is located in the upper right section of the plane, where both x and y values are positive. This is often where we find the most commonly used functions, such as linear equations and basic trigonometric functions. For instance, when plotting the function y = x, all points will reside within this quadrant (象限) as long as x is greater than zero. Moving counterclockwise, the second quadrant (象限) occupies the upper left area, where x values are negative and y values are positive. This quadrant (象限) is crucial for understanding the behavior of functions that change signs, such as polynomial functions. For example, the function y = -x will cross through this quadrant (象限) when x is negative, allowing us to visualize the relationship between variables more effectively. The third quadrant (象限) is located in the lower left section of the plane, where both x and y values are negative. This quadrant (象限) often represents scenarios where both variables decrease simultaneously. For example, if we consider a business model where both revenue and expenses are decreasing, the corresponding points would be plotted in this quadrant (象限). Analyzing data in this section can help identify trends that may not be immediately obvious. Finally, the fourth quadrant (象限) sits in the lower right area, where x values are positive and y values are negative. This quadrant (象限) can represent various real-world situations, such as profit margins that are positive while costs are negative. Understanding how to navigate through these quadrants (象限) allows for a deeper comprehension of mathematical concepts and their applications in fields like economics, physics, and engineering. In addition to mathematics, the concept of quadrants (象限) can also be applied in various contexts outside of pure numbers. For instance, in geography, we often refer to the division of maps into four sections, which can help in navigation and location identification. Similarly, in project management, teams might divide tasks into quadrants (象限) to prioritize and allocate resources more efficiently. In conclusion, the term quadrant (象限) transcends its mathematical origins and finds relevance in multiple disciplines. By mastering the concept of quadrants (象限), individuals can enhance their analytical skills and improve their ability to interpret complex data sets. Whether in the classroom or the workplace, understanding quadrants (象限) is invaluable for making informed decisions based on quantitative analysis.
在数学和科学领域,术语quadrant(象限)具有重要意义,特别是在讨论笛卡尔坐标系时。笛卡尔平面被划分为四个不同的部分,每个部分称为一个quadrant(象限)。这些部分是由x轴和y轴的交点定义的,形成了一个网格状的结构,允许精确绘制点。理解这些quadrants(象限)对学生和专业人士来说至关重要,因为它们提供了分析和解释数据的框架。第一个quadrant(象限)位于平面的右上部分,其中x和y值都是正数。这通常是我们找到最常用的函数的地方,例如线性方程和基本三角函数。例如,当绘制函数y = x时,只要x大于零,所有点都将位于这个quadrant(象限)内。逆时针移动,第二个quadrant(象限)位于左上区域,其中x值为负,y值为正。这个quadrant(象限)对于理解改变符号的函数的行为至关重要,例如多项式函数。例如,函数y = -x在x为负时将穿过这个quadrant(象限),使我们能够更有效地可视化变量之间的关系。第三个quadrant(象限)位于平面的左下部分,其中x和y值都是负数。这个quadrant(象限)通常表示两个变量同时减少的情况。例如,如果我们考虑一个商业模型,其中收入和支出都在减少,相应的点将绘制在这个quadrant(象限)中。在这一部分分析数据可以帮助识别可能并不明显的趋势。最后,第四个quadrant(象限)位于右下区域,其中x值为正,y值为负。这个quadrant(象限)可以表示各种现实世界的情况,例如利润率为正而成本为负。理解如何在这些quadrants(象限)中导航,可以更深入地理解数学概念及其在经济学、物理学和工程等领域的应用。除了数学,quadrants(象限)的概念也可以应用于多个纯数字以外的上下文。例如,在地理学中,我们经常提到将地图划分为四个部分,这有助于导航和位置识别。同样,在项目管理中,团队可能会将任务划分为quadrants(象限),以更有效地优先排序和分配资源。总之,术语quadrant(象限)超越了其数学起源,在多个学科中找到了相关性。通过掌握quadrants(象限)的概念,个人可以增强他们的分析技能,提高他们解释复杂数据集的能力。无论是在课堂上还是在工作场所,理解quadrants(象限)对于基于定量分析做出明智决策是无价的。