micrometry
简明释义
英[maɪˈkrɒmɪtri]美[maɪˈkrɑmətri]
n. 测微法(指使用测微计的测量方法)
英英释义
Micrometry is the measurement of small distances or angles, typically using a microscope or micrometer. | 显微测量是对小距离或角度的测量,通常使用显微镜或千分尺。 |
单词用法
显微测量技术 | |
显微测量值 | |
进行显微测量 | |
显微测量分析 |
同义词
显微计 | The micrometer is used to measure small distances with high precision. | 显微计用于高精度测量小距离。 | |
微测量 | Micro-measurement techniques are essential in fields like nanotechnology. | 微测量技术在纳米技术等领域至关重要。 |
反义词
例句
1.By use of MOS image sensor developed by ChongqingUniversity and microcomputer data processing, a feasible method for laser accurate micrometry is presented in this paper.
本文提出采用重庆大学研制MOS图象传感器,用微机进行数据处理,实现激光精密测微的一种可行方法。
2.By use of MOS image sensor developed by ChongqingUniversity and microcomputer data processing, a feasible method for laser accurate micrometry is presented in this paper.
本文提出采用重庆大学研制MOS图象传感器,用微机进行数据处理,实现激光精密测微的一种可行方法。
3.The laboratory specializes in micrometry for biological samples, providing detailed measurements.
该实验室专注于生物样本的微米测量法,提供详细的测量结果。
4.The scientist used micrometry to measure the dimensions of the tiny organisms under the microscope.
科学家使用微米测量法来测量显微镜下微小生物的尺寸。
5.Using micrometry, researchers can determine the thickness of cell membranes accurately.
通过使用微米测量法,研究人员可以准确地确定细胞膜的厚度。
6.The engineer applied micrometry techniques to ensure the precision of the mechanical components.
工程师应用微米测量法技术以确保机械部件的精度。
7.In the field of materials science, micrometry is essential for analyzing the grain size of metals.
在材料科学领域,微米测量法对于分析金属的晶粒尺寸至关重要。
作文
Micrometry is a fascinating branch of science that deals with the measurement of small distances or angles. This technique is particularly important in fields such as biology, materials science, and engineering, where precision is crucial. The term 'micrometry' refers to the use of specialized instruments called micrometers, which can measure with an accuracy of one thousandth of a millimeter. In this essay, I will explore the significance of micrometry 微米测量 in various applications, its historical development, and its impact on modern scientific research.To begin with, the importance of micrometry 微米测量 cannot be overstated. In biological research, for instance, scientists often need to measure the sizes of cells and microorganisms. With the aid of micrometers, they can obtain precise measurements that are essential for understanding cellular structures and functions. This level of detail is crucial when studying diseases at the cellular level, as even the smallest variations in size can indicate significant biological changes.In materials science, micrometry 微米测量 plays a vital role in the characterization of materials. Engineers and researchers utilize this technique to measure the thickness of coatings, the diameter of fibers, and the dimensions of microstructures. Accurate measurements help in determining the mechanical properties of materials, which is essential for developing new products and improving existing ones. For example, in the aerospace industry, the strength and durability of materials used in aircraft components must be meticulously measured to ensure safety and performance.The historical development of micrometry 微米测量 dates back to the invention of the microscope in the 17th century. Early scientists like Antonie van Leeuwenhoek began using simple microscopes to observe microscopic organisms, but it wasn't until the invention of more advanced measuring instruments that true micrometry 微米测量 emerged. The introduction of the micrometer screw gauge in the 18th century revolutionized the field, allowing for much greater precision in measurements. Over the years, advancements in technology have led to the development of digital micrometers and other sophisticated devices that enhance the accuracy and ease of measurement.In modern scientific research, micrometry 微米测量 has become indispensable. The ability to measure small distances accurately has opened new avenues for exploration in various disciplines. For example, in nanotechnology, researchers manipulate materials at the nanoscale, where traditional measurement techniques may fall short. Here, micrometry 微米测量 provides the necessary tools to quantify dimensions and ensure that experiments yield reliable results.Moreover, the integration of micrometry 微米测量 with computer technology has further enhanced its application. Software programs can analyze data collected from micrometers, allowing scientists to visualize and interpret their findings more effectively. This synergy between measurement and data analysis is driving innovation in research and development across various fields.In conclusion, micrometry 微米测量 is a critical aspect of scientific measurement that enables researchers to obtain precise data in numerous applications. Its historical evolution from simple instruments to advanced digital technologies highlights its importance in modern science. As we continue to push the boundaries of knowledge, the role of micrometry 微米测量 will undoubtedly remain significant, facilitating breakthroughs that could change our understanding of the world around us.
微米测量是一个迷人的科学分支,涉及小距离或角度的测量。这种技术在生物学、材料科学和工程等领域尤为重要,因为精确度至关重要。术语“微米测量”指的是使用称为微米计的专用仪器,这些仪器可以以千分之一毫米的精度进行测量。在这篇文章中,我将探讨微米测量在各种应用中的重要性、历史发展及其对现代科学研究的影响。首先,微米测量的重要性不容小觑。例如,在生物研究中,科学家们常常需要测量细胞和微生物的大小。在微米计的帮助下,他们可以获得精确的测量,这对于理解细胞结构和功能至关重要。这种细节级别在研究细胞水平的疾病时尤其重要,因为即使是最小的大小变化也可能表明重大的生物变化。在材料科学中,微米测量在材料特性表征中发挥着重要作用。工程师和研究人员利用这一技术来测量涂层的厚度、纤维的直径以及微观结构的尺寸。准确的测量有助于确定材料的机械性能,这对于开发新产品和改进现有产品至关重要。例如,在航空航天工业中,用于飞机部件的材料的强度和耐久性必须经过仔细测量,以确保安全和性能。微米测量的历史发展可以追溯到17世纪显微镜的发明。早期科学家如安东尼·范·列文虎克开始使用简单的显微镜观察微观生物,但直到更先进的测量仪器的发明,真正的微米测量才出现。18世纪微米螺旋测微器的引入彻底改变了这一领域,使得测量的精度大大提高。随着时间的推移,技术的进步导致了数字微米计和其他复杂设备的发展,增强了测量的准确性和便利性。在现代科学研究中,微米测量已成为不可或缺的工具。准确测量小距离的能力为各个学科的探索开辟了新的途径。例如,在纳米技术中,研究人员在纳米尺度上操纵材料,而传统的测量技术可能无法满足需求。在这里,微米测量提供了必要的工具,以量化尺寸并确保实验结果的可靠性。此外,微米测量与计算机技术的结合进一步增强了其应用。软件程序可以分析从微米计收集的数据,使科学家能够更有效地可视化和解释他们的发现。这种测量与数据分析之间的协同作用正在推动各个领域的研究和开发的创新。总之,微米测量是科学测量的一个关键方面,使研究人员能够在众多应用中获得精确的数据。它从简单仪器演变为先进数字技术的历史演变突显了其在现代科学中的重要性。随着我们继续推动知识的边界,微米测量的角色无疑将保持重要性,促进可能改变我们对周围世界理解的突破。