radioisotope thermoelectric generator

简明释义

放射性同位素热电源

英英释义

A radioisotope thermoelectric generator (RTG) is a type of electrical generator that uses the heat released by the decay of radioactive isotopes to produce electricity through thermoelectric conversion.

放射性同位素热电发生器(RTG)是一种电气发电机,利用放射性同位素衰变释放的热量,通过热电转换产生电能。

例句

1.NASA has been using radioisotope thermoelectric generators for decades to ensure long-term power in space missions.

NASA几十年来一直在使用放射性同位素热电发生器,以确保太空任务的长期供电。

2.The radioisotope thermoelectric generator aboard the Mars rover allows it to operate during the planet's long nights.

火星探测器上的放射性同位素热电发生器使其能够在火星漫长的夜晚中继续运行。

3.The spacecraft was powered by a radioisotope thermoelectric generator, which provided electricity for its instruments.

这艘航天器由一个放射性同位素热电发生器供电,为其仪器提供电力。

4.The energy produced by the radioisotope thermoelectric generator is used to heat the spacecraft's systems.

放射性同位素热电发生器产生的能量用于加热航天器的系统。

5.One advantage of a radioisotope thermoelectric generator is its ability to function without sunlight.

一个放射性同位素热电发生器的优点是它能够在没有阳光的情况下工作。

作文

The exploration of space has always been a topic of great interest and fascination for humanity. One of the critical aspects of space exploration is the need for reliable power sources to support various missions. Among the various technologies developed for this purpose, the radioisotope thermoelectric generator stands out as a remarkable solution. A radioisotope thermoelectric generator (放射性同位素热电发生器) is a device that converts heat released by the decay of radioactive isotopes into electricity. This technology has been instrumental in powering spacecraft and scientific instruments in environments where solar power is either insufficient or unavailable. The principle behind a radioisotope thermoelectric generator involves the use of thermoelectric materials that can convert temperature differences into electrical voltage. When a radioisotope thermoelectric generator is deployed, it typically contains a radioactive material, such as plutonium-238, which emits heat as it decays. This heat is then absorbed by the thermoelectric elements, creating a temperature gradient. The thermoelectric materials convert this gradient into electrical energy through the Seebeck effect, providing a continuous power supply over long periods.One of the most significant advantages of using a radioisotope thermoelectric generator is its longevity. Unlike conventional batteries that may last only a few years, a radioisotope thermoelectric generator can provide power for decades, making it ideal for long-duration space missions. For example, the Voyager spacecraft, which were launched in 1977, are still operational today thanks to their radioisotope thermoelectric generators. This remarkable durability allows scientists to gather data from distant planets and even interstellar space, expanding our understanding of the universe.Moreover, the reliability of a radioisotope thermoelectric generator is crucial for missions where solar panels would not function effectively, such as in the shadow of planets or in deep space. The ability to generate power without relying on sunlight ensures that instruments can remain operational regardless of their location in the solar system. This has enabled numerous successful missions, including those to Mars, Saturn, and beyond.However, the use of radioisotope thermoelectric generators is not without challenges. The handling and transportation of radioactive materials require stringent safety protocols to protect both astronauts and the environment. Additionally, the production of these generators is complex and costly, which can limit their use to only the most critical missions. Despite these challenges, the benefits of a radioisotope thermoelectric generator far outweigh the drawbacks, especially when considering the advancements in space exploration.In conclusion, the radioisotope thermoelectric generator plays a vital role in the success of space missions, providing a stable and long-lasting power source. Its ability to operate in extreme conditions and for extended periods makes it an invaluable technology in our quest to explore the cosmos. As we continue to push the boundaries of space exploration, the radioisotope thermoelectric generator will undoubtedly remain a key component in our efforts to unlock the mysteries of the universe.

太空探索一直是人类极大的兴趣和迷惑的话题。太空探索的一个关键方面是需要可靠的电源来支持各种任务。在为此目的开发的各种技术中,放射性同位素热电发生器作为一种卓越的解决方案脱颖而出。放射性同位素热电发生器是一种将放射性同位素衰变释放的热量转化为电能的设备。这项技术在为航天器和科学仪器供电方面发挥了重要作用,尤其是在太阳能不足或不可用的环境中。放射性同位素热电发生器的原理涉及使用热电材料将温度差转换为电压。当部署放射性同位素热电发生器时,它通常包含一种放射性材料,如钚-238,随着其衰变释放热量。这种热量被热电元件吸收,从而产生温度梯度。热电材料通过塞贝克效应将这一梯度转化为电能,提供持续的电源供应。使用放射性同位素热电发生器的一个显著优点是其持久性。与可能仅持续几年的一般电池不同,放射性同位素热电发生器可以提供数十年的电力,非常适合长期太空任务。例如,1977年发射的旅行者航天器至今仍在运行,这要归功于它们的放射性同位素热电发生器。这种显著的耐用性使科学家能够从遥远的行星甚至星际空间收集数据,扩展我们对宇宙的理解。此外,放射性同位素热电发生器的可靠性对于在太阳能无法有效发挥作用的任务至关重要,例如在行星的阴影中或在深空中。无需依赖阳光就能发电的能力确保了仪器无论在太阳系的哪个位置都能保持操作。这促成了许多成功的任务,包括对火星、土星及其他星体的探测。然而,使用放射性同位素热电发生器并非没有挑战。处理和运输放射性材料需要严格的安全协议,以保护宇航员和环境。此外,这些发电机的生产复杂且成本高昂,这可能限制它们的使用,仅限于最关键的任务。尽管存在这些挑战,但放射性同位素热电发生器的好处远远超过缺点,尤其是在考虑到太空探索的进步时。总之,放射性同位素热电发生器在太空任务的成功中发挥着至关重要的作用,提供稳定且持久的电源。它在极端条件下和长时间内运行的能力使其成为我们探索宇宙的宝贵技术。随着我们继续推动太空探索的边界,放射性同位素热电发生器无疑将继续作为我们解锁宇宙奥秘的重要组成部分。

相关单词

radioisotope

radioisotope详解:怎么读、什么意思、用法

thermoelectric

thermoelectric详解:怎么读、什么意思、用法

generator

generator详解:怎么读、什么意思、用法