nuclear magnetic resonance

简明释义

核磁共振

英英释义

A physical phenomenon in which nuclei in a magnetic field absorb and re-emit electromagnetic radiation, used in various applications including medical imaging and spectroscopy.

一种物理现象,其中在磁场中的原子核吸收并重新发射电磁辐射,广泛应用于医学成像和光谱分析等领域。

例句

1.The doctor ordered a scan using nuclear magnetic resonance to get a detailed image of the patient's brain.

医生要求使用核磁共振扫描以获取患者大脑的详细图像。

2.The principle behind nuclear magnetic resonance involves the alignment of nuclear spins in a magnetic field.

核磁共振的原理涉及到核自旋在磁场中的排列。

3.In chemistry, nuclear magnetic resonance is crucial for identifying different chemical environments in a molecule.

在化学中,核磁共振对于识别分子中不同的化学环境至关重要。

4.Researchers utilize nuclear magnetic resonance to study the molecular structure of various compounds.

研究人员利用核磁共振研究各种化合物的分子结构。

5.Many modern MRI machines operate based on the principles of nuclear magnetic resonance.

许多现代MRI机器是基于核磁共振的原理运作的。

作文

Nuclear magnetic resonance (NMR) is a powerful analytical technique used primarily in chemistry and medicine to determine the structure of molecules. By exploiting the magnetic properties of certain atomic nuclei, NMR provides detailed information about the physical and chemical properties of atoms within a molecule. This method has revolutionized the way scientists study complex organic compounds and biomolecules, such as proteins and nucleic acids.The principle of Nuclear Magnetic Resonance involves placing a sample in a strong magnetic field and then exposing it to radiofrequency radiation. The nuclei of certain isotopes, most commonly hydrogen-1 and carbon-13, resonate at specific frequencies when subjected to this magnetic field. By measuring the absorption of energy at these frequencies, researchers can infer the environment surrounding these nuclei, which helps in deducing the molecular structure.One of the most significant applications of Nuclear Magnetic Resonance is in the field of medical imaging, specifically in Magnetic Resonance Imaging (MRI). MRI uses the same principles of NMR to create detailed images of the organs and tissues inside the body. This non-invasive imaging technique has become an essential tool in diagnosing various medical conditions, allowing doctors to visualize internal structures without the need for surgery or radiation exposure.In addition to its applications in medicine, Nuclear Magnetic Resonance is widely used in research laboratories. Chemists utilize NMR spectroscopy to identify unknown compounds and confirm the identity of synthesized materials. The ability to analyze complex mixtures and obtain structural information has made NMR an invaluable tool in both academic and industrial research.Furthermore, Nuclear Magnetic Resonance plays a crucial role in drug development. Pharmaceutical companies rely on NMR to study the interactions between drugs and their biological targets. By understanding how a drug binds to its target, researchers can optimize its efficacy and reduce side effects. This process significantly accelerates the development of new therapeutics, ultimately benefiting patients worldwide.Despite its advantages, Nuclear Magnetic Resonance does have some limitations. The technique requires expensive equipment and trained personnel, making it less accessible to smaller laboratories. Additionally, while NMR can provide high-resolution data, analyzing complex spectra can be challenging and time-consuming.In conclusion, Nuclear Magnetic Resonance is a versatile and powerful technique that has transformed the fields of chemistry and medicine. Its applications range from elucidating molecular structures to providing critical insights in medical imaging and drug development. As technology advances, the potential for Nuclear Magnetic Resonance continues to expand, promising even greater contributions to science and healthcare in the future. Understanding this technique is essential for anyone interested in the scientific disciplines that rely on molecular analysis and imaging technologies.

核磁共振(Nuclear Magnetic Resonance)是一种强大的分析技术,主要用于化学和医学领域,以确定分子的结构。通过利用某些原子核的磁性,核磁共振提供了关于分子中原子的物理和化学性质的详细信息。这种方法彻底改变了科学家研究复杂有机化合物和生物大分子(如蛋白质和核酸)的方式。Nuclear Magnetic Resonance的原理是将样品放置在强磁场中,然后用射频辐射照射它。某些同位素的核,最常见的是氢-1和碳-13,在施加这种磁场时会以特定频率共振。通过测量这些频率下能量的吸收,研究人员可以推断出这些核周围的环境,从而帮助推导分子结构。Nuclear Magnetic Resonance最重要的应用之一是在医学成像领域,特别是在磁共振成像(MRI)中。MRI利用核磁共振的相同原理来创建身体内部器官和组织的详细图像。这种非侵入性成像技术已成为诊断各种医疗条件的重要工具,使医生能够可视化内部结构,而无需手术或辐射暴露。除了在医学中的应用外,Nuclear Magnetic Resonance还广泛用于研究实验室。化学家利用NMR光谱法来识别未知化合物并确认合成材料的身份。分析复杂混合物并获得结构信息的能力使NMR成为学术界和工业研究中不可或缺的工具。此外,Nuclear Magnetic Resonance在药物开发中也发挥着至关重要的作用。制药公司依赖NMR研究药物与其生物靶点之间的相互作用。通过了解药物如何与其靶点结合,研究人员可以优化其疗效并减少副作用。这个过程显著加速了新疗法的开发,最终使全球患者受益。尽管有其优势,Nuclear Magnetic Resonance也存在一些局限性。这项技术需要昂贵的设备和训练有素的人员,使其对较小的实验室而言难以获得。此外,虽然NMR可以提供高分辨率的数据,但分析复杂的光谱可能具有挑战性且耗时。总之,Nuclear Magnetic Resonance是一种多功能且强大的技术,彻底改变了化学和医学领域。它的应用范围从阐明分子结构到提供医学成像和药物开发中的关键见解。随着技术的进步,Nuclear Magnetic Resonance的潜力不断扩大,承诺在未来为科学和医疗保健做出更大的贡献。理解这项技术对于任何对依赖分子分析和成像技术的科学学科感兴趣的人来说都是必不可少的。

相关单词

nuclear

nuclear详解:怎么读、什么意思、用法

magnetic

magnetic详解:怎么读、什么意思、用法