nuclear magnetic moment

简明释义

核磁矩

英英释义

The nuclear magnetic moment is a vector quantity that represents the magnetic properties of an atomic nucleus, arising from the spins and orbital angular momentum of its constituent protons and neutrons.

核磁矩是一个矢量量,表示原子核的磁性特性,源于其组成质子和中子的自旋和轨道角动量。

例句

1.The nuclear magnetic moment can be altered by applying an external magnetic field.

通过施加外部磁场,可以改变核磁矩

2.Scientists use the nuclear magnetic moment to study the interactions between nucleons.

科学家使用核磁矩研究核子之间的相互作用。

3.The measurement of the nuclear magnetic moment provides insights into the structure of atomic nuclei.

核磁矩的测量提供了原子核结构的见解。

4.Understanding the nuclear magnetic moment helps in the development of quantum computers.

理解核磁矩有助于量子计算机的发展。

5.In MRI technology, the nuclear magnetic moment of hydrogen atoms is crucial for imaging.

在MRI技术中,氢原子的核磁矩对成像至关重要。

作文

The concept of nuclear magnetic moment refers to the magnetic properties of atomic nuclei, which arise from the spin and orbital angular momentum of their constituent protons and neutrons. This phenomenon is crucial in the field of nuclear physics and has significant implications in various applications, such as magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) spectroscopy. Understanding the nuclear magnetic moment is essential for scientists and researchers as it provides insights into the structure and behavior of atomic nuclei.To grasp the importance of the nuclear magnetic moment, we must first delve into the fundamental principles of magnetism at the atomic level. Each nucleon, whether a proton or a neutron, possesses an intrinsic property known as 'spin.' This spin can be thought of as a tiny magnetic field generated by the nucleon. In addition to this intrinsic spin, protons also have an orbital contribution to their magnetic moment due to their motion around the nucleus. The combination of these two factors leads to the overall magnetic moment of the nucleus, which is what we refer to as the nuclear magnetic moment.The nuclear magnetic moment is not uniform across different isotopes of an element. For instance, the magnetic moments of hydrogen-1 and hydrogen-2 (deuterium) differ significantly due to the presence of an additional neutron in deuterium. This difference can be exploited in NMR spectroscopy, where the distinct magnetic environments of nuclei are used to analyze molecular structures. By applying a strong external magnetic field, researchers can manipulate the alignment of these nuclear spins, leading to valuable information about the chemical environment surrounding the nuclei.Moreover, the nuclear magnetic moment plays a pivotal role in medical imaging techniques like MRI. In MRI, hydrogen nuclei in water molecules within the body are targeted. When placed in a magnetic field, these nuclei align with the field, and radiofrequency pulses are used to disturb this alignment. As the nuclei return to their equilibrium state, they emit signals that are detected and transformed into images. The variations in the nuclear magnetic moment of different tissues result in contrasting signals, allowing for detailed imaging of internal structures.In summary, the nuclear magnetic moment is a fundamental property of atomic nuclei that arises from the combined effects of spin and orbital motion of nucleons. Its significance extends beyond theoretical physics into practical applications such as NMR spectroscopy and MRI. By understanding the nuclear magnetic moment, scientists can unlock the mysteries of atomic structure and harness this knowledge for innovative technologies that improve our understanding of the universe and enhance medical diagnostics. As research continues to advance, the implications of the nuclear magnetic moment will undoubtedly expand, opening new avenues for exploration in both science and medicine.

“核磁矩”这一概念指的是原子核的磁性特性,这种特性源于其组成质子和中子的自旋和轨道角动量。这一现象在核物理学领域至关重要,并在各种应用中具有重要意义,例如磁共振成像(MRI)和核磁共振(NMR)光谱。理解“核磁矩”对于科学家和研究人员来说是必不可少的,因为它提供了关于原子核结构和行为的深入见解。为了理解“核磁矩”的重要性,我们必须首先探讨原子层面上磁性的基本原理。每个核子,无论是质子还是中子,都具有一种称为“自旋”的内在属性。可以将这种自旋视为核子产生的小磁场。除了这种内在自旋外,质子由于其围绕原子核的运动也对其磁矩有轨道贡献。这两个因素的结合导致了核的整体磁矩,这就是我们所称的“核磁矩”。“核磁矩”在不同元素的同位素之间并不均匀。例如,氢-1和氢-2(氘)的磁矩由于氘中多出一个中子的存在而显著不同。这种差异可以在NMR光谱中利用,其中核的不同磁环境用于分析分子结构。通过施加强大的外部磁场,研究人员可以操纵这些核自旋的排列,从而获得关于核周围化学环境的宝贵信息。此外,“核磁矩”在医学成像技术如MRI中发挥着关键作用。在MRI中,体内水分子中的氢核被靶向。当置于磁场中时,这些核与磁场对齐,并使用射频脉冲来干扰这种对齐。当核返回到其平衡状态时,它们会发出信号,这些信号被检测并转化为图像。不同组织的“核磁矩”变化导致信号对比,从而允许对内部结构进行详细成像。总之,“核磁矩”是原子核的一种基本属性,源于核子自旋和轨道运动的综合影响。它的重要性不仅限于理论物理,还延伸到NMR光谱和MRI等实际应用。通过理解“核磁矩”,科学家可以揭示原子结构的奥秘,并利用这些知识开发创新技术,改善我们对宇宙的理解并增强医学诊断。随着研究的不断进展,“核磁矩”的影响无疑将扩展,为科学和医学探索开辟新的途径。

相关单词

nuclear

nuclear详解:怎么读、什么意思、用法

magnetic

magnetic详解:怎么读、什么意思、用法