nuclear magnetic alignment

简明释义

核磁排列

英英释义

Nuclear magnetic alignment refers to the arrangement of nuclear spins in a material under the influence of an external magnetic field, resulting in a preferred orientation of the nuclear magnetic moments.

核磁共振对齐是指在外部磁场的影响下,材料中核自旋的排列,导致核磁矩的优先取向。

例句

1.The process of achieving nuclear magnetic alignment 核磁对齐 is crucial for enhancing the quality of MRI images.

实现核磁对齐 nuclear magnetic alignment的过程对于提高MRI图像的质量至关重要。

2.The effectiveness of the experiment depended on the nuclear magnetic alignment 核磁对齐 of the sample being tested.

实验的有效性取决于所测试样品的核磁对齐 nuclear magnetic alignment

3.Researchers are studying nuclear magnetic alignment 核磁对齐 to improve quantum computing systems.

研究人员正在研究核磁对齐 nuclear magnetic alignment以改善量子计算系统。

4.We need to maintain proper nuclear magnetic alignment 核磁对齐 to ensure accurate readings in our devices.

我们需要保持适当的核磁对齐 nuclear magnetic alignment以确保设备读数的准确性。

5.In NMR spectroscopy, nuclear magnetic alignment 核磁对齐 plays a key role in determining molecular structures.

在核磁共振光谱学中,核磁对齐 nuclear magnetic alignment在确定分子结构方面起着关键作用。

作文

The concept of nuclear magnetic alignment plays a crucial role in the field of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Understanding this phenomenon requires a basic grasp of how atomic nuclei behave in a magnetic field. When placed in a strong magnetic field, certain nuclei, particularly those with an odd number of protons or neutrons, tend to align themselves with the direction of the field. This alignment is not complete; rather, it creates a slight excess of nuclei aligned with the field compared to those that are not. This subtle difference in alignment leads to the observable effects that NMR and MRI exploit.

The mechanism behind nuclear magnetic alignment can be explained through quantum mechanics. Each nucleus possesses a property called spin, which can be thought of as a tiny magnet. When exposed to an external magnetic field, these spins can either align parallel (low energy state) or antiparallel (high energy state) to the field. The majority of nuclei will occupy the lower energy state, resulting in a net magnetization in the direction of the applied magnetic field. This phenomenon is essential for the functioning of NMR, where radiofrequency pulses are used to disturb this alignment, allowing scientists to gather detailed information about the molecular structure and dynamics of various substances.

In practical applications, nuclear magnetic alignment is vital for medical imaging techniques like MRI. In an MRI machine, patients are placed within a powerful magnet that generates a strong magnetic field. The hydrogen nuclei in the body, primarily found in water and fat, respond to this field by aligning themselves accordingly. When a radiofrequency pulse is applied, these nuclei are knocked out of alignment. As they return to their original state, they emit signals that are detected and converted into images. The ability to visualize soft tissues in the body has revolutionized diagnostics, providing clear images without the need for invasive procedures.

Moreover, the study of nuclear magnetic alignment extends beyond medical applications. In chemistry and physics, understanding how molecules behave under different magnetic environments can lead to advancements in materials science, quantum computing, and even the development of new pharmaceuticals. For instance, researchers can use NMR to determine the structure of complex organic compounds, which is essential for drug discovery.

In conclusion, nuclear magnetic alignment is a fundamental concept that bridges the gap between theoretical physics and practical applications in medicine and science. Its implications are vast, ranging from improving diagnostic imaging techniques to advancing our understanding of molecular structures. As technology continues to evolve, the principles of nuclear magnetic alignment will undoubtedly play a pivotal role in future innovations, making it an area of great interest for scientists and medical professionals alike.

“核磁共振对齐”这一概念在核磁共振(NMR)和磁共振成像(MRI)领域中发挥着至关重要的作用。理解这一现象需要对原子核在磁场中的行为有一定的基础了解。当置于强磁场中时,某些具有奇数质子或中子的核往往会趋向于与磁场方向对齐。这种对齐并不是完全的;而是导致与磁场方向对齐的核相对于未对齐的核有微小的过剩。这种微妙的对齐差异导致了NMR和MRI所利用的可观察效应。

“核磁共振对齐”的机制可以通过量子力学进行解释。每个核都具有一种称为自旋的属性,可以被视为一个微小的磁铁。当暴露在外部磁场中时,这些自旋可以与磁场平行(低能态)或反平行(高能态)对齐。大多数核将占据较低能量状态,从而导致沿施加磁场方向的净磁化。这一现象对于NMR的功能至关重要,在NMR中,射频脉冲用于干扰这种对齐,使科学家能够收集有关各种物质的分子结构和动态的详细信息。

在实际应用中,“核磁共振对齐”对医学成像技术如MRI至关重要。在MRI机器中,患者被放置在一个产生强大磁场的强磁铁中。体内的氢核,主要存在于水和脂肪中,对这个磁场做出反应,按照相应的方式对齐。当施加射频脉冲时,这些核会被打乱对齐。当它们返回到原始状态时,会发出信号,这些信号被检测并转换为图像。可视化身体软组织的能力彻底改变了诊断,为清晰的图像提供了无需侵入性程序的解决方案。

此外,“核磁共振对齐”的研究超越了医学应用。在化学和物理学中,理解分子在不同磁场环境下的行为可以推动材料科学、量子计算甚至新药开发的进展。例如,研究人员可以利用NMR确定复杂有机化合物的结构,这对药物发现至关重要。

总之,“核磁共振对齐”是一个基本概念,它架起了理论物理与医学和科学实际应用之间的桥梁。它的影响范围广泛,从改善诊断成像技术到加深我们对分子结构的理解。随着技术的不断发展,“核磁共振对齐”的原理无疑将在未来的创新中发挥关键作用,使其成为科学家和医疗专业人士极为关注的领域。

相关单词

nuclear

nuclear详解:怎么读、什么意思、用法

magnetic

magnetic详解:怎么读、什么意思、用法

alignment

alignment详解:怎么读、什么意思、用法